Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression

被引:37
|
作者
Guo, Yu [1 ]
Lu, Yuxu [2 ]
Liu, Ryan Wen [2 ]
Yang, Meifang [2 ]
Chui, Kwok Tai [3 ]
机构
[1] Wuhan Univ Technol, Sch Transportat, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[3] Open Univ Hong Kong, Sch Sci & Technol, Dept Technol, Hong Kong, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 145297-145315期
基金
中国国家自然科学基金;
关键词
Lighting; Image enhancement; Histograms; Noise reduction; Visualization; Imaging; Image quality; Low-light image enhancement; image restoration; Retinex theory; illumination optimization; noise suppression; HISTOGRAM EQUALIZATION; VARIATIONAL FRAMEWORK; REAL-TIME; CONVERGENCE; RETINEX; BLOCKS; MODEL;
D O I
10.1109/ACCESS.2020.3015217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maritime images captured under low-light imaging condition easily suffer from low visibility and unexpected noise, leading to negative effects on maritime traffic supervision and management. To promote imaging performance, it is necessary to restore the important visual information from degraded low-light images. In this article, we propose to enhance the low-light images through regularized illumination optimization and deep noise suppression. In particular, a hybrid regularized variational model, which combines L0-norm gradient sparsity prior with structure-aware regularization, is presented to refine the coarse illumination map originally estimated using Max-RGB. The adaptive gamma correction method is then introduced to adjust the refined illumination map. Based on the assumption of Retinex theory, a guided filter-based detail boosting method is introduced to optimize the reflection map. The adjusted illumination and optimized reflection maps are finally combined to generate the enhanced maritime images. To suppress the effect of unwanted noise on imaging performance, a deep learning-based blind denoising framework is further introduced to promote the visual quality of enhanced image. In particular, this framework is composed of two sub-networks, i.e., E-Net and D-Net adopted for noise level estimation and non-blind noise reduction, respectively. The main benefit of our image enhancement method is that it takes full advantage of the regularized illumination optimization and deep blind denoising. Comprehensive experiments have been conducted on both synthetic and realistic maritime images to compare our proposed method with several state-of-the-art imaging methods. Experimental results have illustrated its superior performance in terms of both quantitative and qualitative evaluations.
引用
收藏
页码:145297 / 145315
页数:19
相关论文
共 50 条
  • [21] Low-light image enhancement by deep learning network for improved illumination map
    Wang, Manli
    Li, Jiayue
    Zhang, Changsen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [22] Detachable image decomposition and illumination mapping search for low-light image enhancement
    Jia, Fan
    Mao, Shen
    Huang, Zijian
    Zeng, Tieyong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 436
  • [23] Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement
    Guo, Lanqing
    Lin, Yuxin
    Li, Jian
    Wen, Bihan
    IEEE MULTIMEDIA, 2024, 31 (01) : 33 - 41
  • [24] Extreme Low-light Image Enhancement Using Deep Neural Network
    Xu, Ming
    Li, Hongping
    Chen, Jian
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [25] Low-Light Image Enhancement: A Comparative Review and Prospects
    Kim, Wonjun
    IEEE ACCESS, 2022, 10 (84535-84557): : 84535 - 84557
  • [26] Fractal pyramid low-light image enhancement network with illumination information
    Sun, Ting
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [27] Structure-Texture Aware Network for Low-Light Image Enhancement
    Xu, Kai
    Chen, Huaian
    Xu, Chunmei
    Jin, Yi
    Zhu, Changan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 4983 - 4996
  • [28] Unsupervised Boosted Fusion Network for Single Low-Light Image Enhancement
    Zhang, Jianfeng
    Li, Hengxuan
    Huo, Zhanqiang
    IEEE ACCESS, 2024, 12 : 179252 - 179264
  • [29] Low-Light Image Enhancement via Poisson Noise Aware Retinex Model
    Kong, Xiang-Yu
    Liu, Lei
    Qian, Yun-Sheng
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1540 - 1544
  • [30] Low-light image enhancement with joint illumination and noise data distribution transformation
    Guo, Sheng
    Wang, Wei
    Wang, Xiao
    Xu, Xin
    VISUAL COMPUTER, 2023, 39 (04) : 1363 - 1374