Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression

被引:39
作者
Guo, Yu [1 ]
Lu, Yuxu [2 ]
Liu, Ryan Wen [2 ]
Yang, Meifang [2 ]
Chui, Kwok Tai [3 ]
机构
[1] Wuhan Univ Technol, Sch Transportat, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sch Nav, Hubei Key Lab Inland Shipping Technol, Wuhan 430063, Peoples R China
[3] Open Univ Hong Kong, Sch Sci & Technol, Dept Technol, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Image enhancement; Histograms; Noise reduction; Visualization; Imaging; Image quality; Low-light image enhancement; image restoration; Retinex theory; illumination optimization; noise suppression; HISTOGRAM EQUALIZATION; VARIATIONAL FRAMEWORK; REAL-TIME; CONVERGENCE; RETINEX; BLOCKS; MODEL;
D O I
10.1109/ACCESS.2020.3015217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maritime images captured under low-light imaging condition easily suffer from low visibility and unexpected noise, leading to negative effects on maritime traffic supervision and management. To promote imaging performance, it is necessary to restore the important visual information from degraded low-light images. In this article, we propose to enhance the low-light images through regularized illumination optimization and deep noise suppression. In particular, a hybrid regularized variational model, which combines L0-norm gradient sparsity prior with structure-aware regularization, is presented to refine the coarse illumination map originally estimated using Max-RGB. The adaptive gamma correction method is then introduced to adjust the refined illumination map. Based on the assumption of Retinex theory, a guided filter-based detail boosting method is introduced to optimize the reflection map. The adjusted illumination and optimized reflection maps are finally combined to generate the enhanced maritime images. To suppress the effect of unwanted noise on imaging performance, a deep learning-based blind denoising framework is further introduced to promote the visual quality of enhanced image. In particular, this framework is composed of two sub-networks, i.e., E-Net and D-Net adopted for noise level estimation and non-blind noise reduction, respectively. The main benefit of our image enhancement method is that it takes full advantage of the regularized illumination optimization and deep blind denoising. Comprehensive experiments have been conducted on both synthetic and realistic maritime images to compare our proposed method with several state-of-the-art imaging methods. Experimental results have illustrated its superior performance in terms of both quantitative and qualitative evaluations.
引用
收藏
页码:145297 / 145315
页数:19
相关论文
共 73 条
[1]  
Adam P., 2017, P C WORKSH NEUR PROC, P1
[2]  
[Anonymous], 2018, INT CONF RELI INFO
[3]  
[Anonymous], 2015, LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-319-24574-4_28
[4]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[5]   Vector-based navigation using grid-like representations in artificial agents [J].
Banino, Andrea ;
Barry, Caswell ;
Uria, Benigno ;
Blundell, Charles ;
Lillicrap, Timothy ;
Mirowski, Piotr ;
Pritzel, Alexander ;
Chadwick, Martin J. ;
Degris, Thomas ;
Modayil, Joseph ;
Wayne, Greg ;
Soyer, Hubert ;
Viola, Fabio ;
Zhang, Brian ;
Goroshin, Ross ;
Rabinowitz, Neil ;
Pascanu, Razvan ;
Beattie, Charlie ;
Petersen, Stig ;
Sadik, Amir ;
Gaffney, Stephen ;
King, Helen ;
Kavukcuoglu, Koray ;
Hassabis, Demis ;
Hadsell, Raia ;
Kumaran, Dharshan .
NATURE, 2018, 557 (7705) :429-+
[6]   Nonlocal image and movie denoising [J].
Buades, Antoni ;
Coll, Bartomeu ;
Morel, Jean-Michel .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 76 (02) :123-139
[7]   Learning to See in the Dark [J].
Chen, Chen ;
Chen, Qifeng ;
Xu, Jia ;
Koltun, Vladlen .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3291-3300
[8]   A note on the convergence of ADMM for linearly constrained convex optimization problems [J].
Chen, Liang ;
Sun, Defeng ;
Toh, Kim-Chuan .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (02) :327-343
[9]   Minimum mean brightness error bi-histogram equalization in contrast enhancement [J].
Chen, SD ;
Ramli, R .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2003, 49 (04) :1310-1319
[10]   Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling [J].
Chen, Wei ;
Shahabi, Himan ;
Shirzadi, Ataollah ;
Hong, Haoyuan ;
Akgun, Aykut ;
Tian, Yingying ;
Liu, Junzhi ;
Zhu, A-Xing ;
Li, Shaojun .
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2019, 78 (06) :4397-4419