Simulating the effect of urban light rail transit on urban development by coupling cellular automata and conjugate gradients

被引:11
作者
Wang, Jiafeng [1 ,2 ]
Feng, Yongjiu [1 ,2 ]
Ye, Zhen [1 ,2 ]
Tong, Xiaohua [1 ,2 ]
Wang, Rong [3 ]
Gao, Chen [3 ]
Chen, Shurui [3 ]
Lei, Zhenkun [3 ]
Liu, Song [4 ]
Jin, Yanmin [1 ,2 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai Key Lab Space Mapping & Remote Sensing P, Shanghai 200092, Peoples R China
[3] Shanghai Ocean Univ, Coll Marine Sci, Shanghai, Peoples R China
[4] Tongji Univ, Coll Architecture & Urban Planning, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Urban land-use change; urban light rail transit; cellular automata; conjugate gradients; scenario projection; LAND-USE; PUBLIC-TRANSIT; GROWTH; TRANSPORTATION; CHINA; MODEL; EXPANSION; SHANGHAI; JEDDAH; IMPACT;
D O I
10.1080/10106049.2020.1810329
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban light rail transit systems have a significant potential to alter future urban development. We developed a new cellular automata model (CA(CG)) based on conjugate gradients, and applied it to 1) simulate historical urban development at Jinhua of China, and 2) project future development scenarios incorporating the effect of future light rail transit stations (LRTS). The model produced a realistic urban pattern for 2018 with overall accuracy exceeding 95%, Kappa coefficient exceeding 70% and figure-of-merit exceeding 32%, indicating the model's ability to accurately capture urban dynamics. We predicted three different scenarios: a benchmark scenario of business as usual (BAU), a scenario focusing on LRTS, and an individual-factor-based scenario (ILRTS). The results show that the annual urban development intensity has the strongest correlation with LRT stations for LRTS-scenario, followed by ILRTS-scenario and BAU-scenario. The model can be readily applied elsewhere to assess the impact of urban infrastructure on future development.
引用
收藏
页码:2346 / 2364
页数:19
相关论文
共 70 条
  • [11] Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable
    Chen, Hao
    Pontius, Robert Gilmore, Jr.
    [J]. LANDSCAPE ECOLOGY, 2010, 25 (09) : 1319 - 1331
  • [12] Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization
    Chen, Xiaojun
    Zhou, Weijun
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (04): : 765 - 790
  • [13] Chen Y.R., 2019, PHYTOTHER RES PTR, V33, P1
  • [14] Economic Growth and the Expansion of Urban Land in China
    Deng, Xiangzheng
    Huang, Jikun
    Rozelle, Scott
    Uchida, Emi
    [J]. URBAN STUDIES, 2010, 47 (04) : 813 - 843
  • [15] An empirical study on transit-oriented low-carbon urban land use planning: Exploratory Spatial Data Analysis (ESDA) on Shanghai, China
    Dou, Yi
    Luo, Xiao
    Dong, Liang
    Wu, Chuntao
    Liang, Hanwei
    Ren, Jingzheng
    [J]. HABITAT INTERNATIONAL, 2016, 53 : 379 - 389
  • [16] The Effect of Light Rail Transit on Physical Activity: Design and Methods of the Travel-Related Activity in Neighborhoods Study
    Durand, Casey P.
    Oluyomi, Abiodun O.
    Gabriel, Kelley Pettee
    Salvo, Deborah
    Sener, Ipek N.
    Hoelscher, Deanna M.
    Knell, Gregory
    Tang, Xiaohui
    Porter, Anna K.
    Robertson, Michael C.
    Kohl, Harold W., III
    [J]. FRONTIERS IN PUBLIC HEALTH, 2016, 4
  • [17] Urban Growth and Transportation
    Duranton, Gilles
    Turner, Matthew A.
    [J]. REVIEW OF ECONOMIC STUDIES, 2012, 79 (04) : 1407 - 1440
  • [18] Estimating the Effects of Light Rail Transit (LRT) System on Residential Property Values Using Geographically Weighted Regression (GWR)
    Dziauddin, Mohd Faris
    Powe, Neil
    Alvanides, Seraphim
    [J]. APPLIED SPATIAL ANALYSIS AND POLICY, 2015, 8 (01) : 1 - 25
  • [20] A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods
    Feng, Yongjiu
    Tong, Xiaohua
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (01) : 74 - 97