Lp-theory for a fluid-structure interaction model

被引:0
作者
Denk, Robert [1 ]
Saal, Juergen [2 ]
机构
[1] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
[2] Heinrich Heine Univ Dusseldorf, Math Inst, Angew Anal, D-40204 Dusseldorf, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 05期
关键词
Fluid-structure interaction; maximal regularity; Newton polygon; WEAK SOLUTIONS; UNSTEADY INTERACTION; VISCOUS-FLUID; EXISTENCE;
D O I
10.1007/s00033-020-01387-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fluid-structure interaction model for an incompressible fluid where the elastic response of the free boundary is given by a damped Kirchhoff plate model. Utilizing the Newton polygon approach, we first prove maximal regularity in L-p-Sobolev spaces for a linearized version. Based on this, we show existence and uniqueness of the strong solution of the nonlinear system for small data.
引用
收藏
页数:18
相关论文
共 26 条