SNP Set Association Analysis for Genome-Wide Association Studies

被引:11
作者
Cai, Min [1 ]
Dai, Hui [1 ]
Qiu, Yongyong [1 ]
Zhao, Yang [1 ]
Zhang, Ruyang [1 ]
Chu, Minjie [1 ]
Dai, Juncheng [1 ]
Hu, Zhibin [1 ,2 ,3 ]
Shen, Hongbing [1 ,2 ,3 ]
Chen, Feng [1 ]
机构
[1] Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Ctr Canc, Jiangsu Key Lab Canc Biomarkers Prevent & Treatme, Clin Epidemiol Sect, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Med Univ, State Key Lab Reprod Med, Nanjing, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
PRINCIPAL COMPONENT ANALYSIS; CANCER SUSCEPTIBILITY LOCI; LUNG-CANCER; GENE; MULTIPLE; SURVIVAL; DISEASE; VARIANT; TESTS;
D O I
10.1371/journal.pone.0062495
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide association study (GWAS) is a promising approach for identifying common genetic variants of the diseases on the basis of millions of single nucleotide polymorphisms (SNPs). In order to avoid low power caused by overmuch correction for multiple comparisons in single locus association study, some methods have been proposed by grouping SNPs together into a SNP set based on genomic features, then testing the joint effect of the SNP set. We compare the performances of principal component analysis (PCA), supervised principal component analysis (SPCA), kernel principal component analysis (KPCA), and sliced inverse regression (SIR). Simulated SNP sets are generated under scenarios of 0, 1 and >= 2 causal SNPs model. Our simulation results show that all of these methods can control the type I error at the nominal significance level. SPCA is always more powerful than the other methods at different settings of linkage disequilibrium structures and minor allele frequency of the simulated datasets. We also apply these four methods to a real GWAS of non-small cell lung cancer (NSCLC) in Han Chinese population
引用
收藏
页数:10
相关论文
共 37 条
[1]   Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 [J].
Amos, Christopher I. ;
Wu, Xifeng ;
Broderick, Peter ;
Gorlov, Ivan P. ;
Gu, Jian ;
Eisen, Timothy ;
Dong, Qiong ;
Zhang, Qing ;
Gu, Xiangjun ;
Vijayakrishnan, Jayaram ;
Sullivan, Kate ;
Matakidou, Athena ;
Wang, Yufei ;
Mills, Gordon ;
Doheny, Kimberly ;
Tsai, Ya-Yu ;
Chen, Wei Vivien ;
Shete, Sanjay ;
Spitz, Margaret R. ;
Houlston, Richard S. .
NATURE GENETICS, 2008, 40 (05) :616-622
[2]  
[Anonymous], 2006, QUANTO 1.1 A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies
[3]   Prediction by supervised principal components [J].
Bair, E ;
Hastie, T ;
Paul, D ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :119-137
[4]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[5]   Gene- or Region-Based Analysis of Genome-Wide Association Studies [J].
Beyene, Joseph ;
Tritchler, David ;
Asimit, Jennifer L. ;
Hamid, Jemila S. .
GENETIC EPIDEMIOLOGY, 2009, 33 :S105-S110
[6]  
Buil Alfonso, 2009, BMC Proc, V3 Suppl 7, pS130
[7]   Influence of DNA repair gene polymorphisms on prognosis in inoperable non-small cell lung cancer patients treated with radiotherapy and platinum-based chemotherapy [J].
Butkiewicz, Dorota ;
Drosik, Anna ;
Suwinski, Rafal ;
Krzesniak, Malgorzata ;
Rusin, Marek ;
Kosarewicz, Agata ;
Rachtan, Jadwiga ;
Matuszczyk, Iwona ;
Gawkowska-Suwinska, Marzena .
INTERNATIONAL JOURNAL OF CANCER, 2012, 131 (07) :E1100-E1108
[8]   Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes [J].
Chen, Xi ;
Wang, Lily ;
Smith, Jonathan D. ;
Zhang, Bing .
BIOINFORMATICS, 2008, 24 (21) :2474-2481
[9]   Pathway-Based Analysis for Genome-Wide Association Studies Using Supervised Principal Components [J].
Chen, Xi ;
Wang, Lily ;
Hu, Bo ;
Guo, Mingsheng ;
Barnard, John ;
Zhu, Xiaofeng .
GENETIC EPIDEMIOLOGY, 2010, 34 (07) :716-724
[10]   Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population [J].
Dong, Jing ;
Hu, Zhibin ;
Wu, Chen ;
Guo, Huan ;
Zhou, Baosen ;
Lv, Jiachun ;
Lu, Daru ;
Chen, Kexin ;
Shi, Yongyong ;
Chu, Minjie ;
Wang, Cheng ;
Zhang, Ruyang ;
Dai, Juncheng ;
Jiang, Yue ;
Cao, Songyu ;
Qin, Zhenzhen ;
Yu, Dianke ;
Ma, Hongxia ;
Jin, Guangfu ;
Gong, Jianhang ;
Sun, Chongqi ;
Zhao, Xueying ;
Yin, Zhihua ;
Yang, Lei ;
Li, Zhiqiang ;
Deng, Qifei ;
Wang, Jiucun ;
Wu, Wei ;
Zheng, Hong ;
Zhou, Guoquan ;
Chen, Hongyan ;
Guan, Peng ;
Peng, Zhihang ;
Chen, Yijiang ;
Shu, Yongqian ;
Xu, Lin ;
Liu, Xiangyang ;
Liu, Li ;
Xu, Pin ;
Han, Baohui ;
Bai, Chunxue ;
Zhao, Yuxia ;
Zhang, Haibo ;
Yan, Ying ;
Amos, Christopher I. ;
Chen, Feng ;
Tan, Wen ;
Jin, Li ;
Wu, Tangchun ;
Lin, Dongxin .
NATURE GENETICS, 2012, 44 (08) :895-+