Stable matter-wave solitons in the vortex core of a uniform condensate

被引:4
作者
Adhikari, S. K. [1 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
关键词
dipolar atom; soliton; vortex; cold atoms; mean-field model; BOSE-EINSTEIN CONDENSATE; GROSS-PITAEVSKII EQUATION; DYNAMICS;
D O I
10.1088/0953-4075/48/16/165303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a stable, mobile, dipolar or nondipolar three-dimensional matter-wave soliton in the vortex core of a uniform nondipolar condensate. All intra-and inter-species contact interactions can be repulsive for a strongly dipolar soliton. For a weakly dipolar or nondipolar soliton, the intra-species contact interaction in the soliton should be attractive for the formation of a compact soliton. The soliton can propagate with a constant velocity along the vortex core without any deformation. Two such solitons undergo a quasi-elastic collision at medium velocities. We illustrate the findings using realistic interactions in a mean-field model of binary Rb-87-Rb-85 and Rb-87-Dy-164 systems.
引用
收藏
页数:8
相关论文
共 43 条
  • [31] Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Muruganandam, P.
    Adhikari, S. K.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1888 - 1912
  • [32] Phonon Instability with Respect to Soliton Formation in Two-Dimensional Dipolar Bose-Einstein Condensates
    Nath, R.
    Pedri, P.
    Santos, L.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (05)
  • [33] Two-dimensional bright solitons in dipolar Bose-Einstein condensates
    Pedri, P
    Santos, L
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (20)
  • [34] Bose-Einstein solitons in highly asymmetric traps
    Perez-Garcia, VM
    Michinel, H
    Herrero, H
    [J]. PHYSICAL REVIEW A, 1998, 57 (05): : 3837 - 3842
  • [35] Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates
    Salasnich, L
    Parola, A
    Reatto, L
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 6
  • [36] Novel soliton solutions of the nonlinear Schrodinger equation model
    Serkin, VN
    Hasegawa, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4502 - 4505
  • [37] Formation and propagation of matter-wave soliton trains
    Strecker, KE
    Partridge, GB
    Truscott, AG
    Hulet, RG
    [J]. NATURE, 2002, 417 (6885) : 150 - 153
  • [38] Anisotropic solitons in dipolar Bose-Einstein condensates
    Tikhonenkov, I.
    Malomed, B. A.
    Vardi, A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (09)
  • [39] OBSERVATION OF 2-DIMENSIONAL SPATIAL SOLITARY WAVES IN A QUADRATIC MEDIUM
    TORRUELLAS, WE
    WANG, Z
    HAGAN, DJ
    VANSTRYLAND, EW
    STEGEMAN, GI
    TORNER, L
    MENYUK, CR
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (25) : 5036 - 5039
  • [40] C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
    Vudragovic, Dusan
    Vidanovic, Ivana
    Balaz, Antun
    Muruganandam, Paulsamy
    Adhikari, Sadhan K.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (09) : 2021 - 2025