Superconvergence for discontinuous Galerkin finite element methods by L2-projection methods

被引:0
|
作者
Jari, Rabeea [1 ]
Mu, Lin [1 ]
Harris, Anna [1 ]
Fox, Lynn [1 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA
关键词
DG finite element methods; Superconvergence; L-2-projection; Elliptic problem; 2ND-ORDER ELLIPTIC PROBLEMS; PATCH RECOVERY; ERROR; APPROXIMATIONS; PROJECTIONS; EQUATIONS; GRADIENT;
D O I
10.1016/j.camwa.2012.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general superconvergence of discontinuous Galerkin (DG) finite element method for the elliptic problem is established by using L-2-projection method. Regularity assumptions for the elliptic problem with regular partitions are required. Numerical experiments are given to verify the theoretical results. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 50 条
  • [11] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [12] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [13] Superconvergence of finite element approximations for the Stokes problem by projection methods
    Wang, JP
    Ye, X
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) : 1001 - 1013
  • [14] Superconvergence and time evolution of discontinuous Galerkin finite element solutions
    Cheng, Yingda
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (22) : 9612 - 9627
  • [15] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Zhang, Zhimin
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2555 - 2573
  • [16] On the coupling of local discontinuous Galerkin and conforming finite element methods
    Perugia I.
    Schötzau D.
    Journal of Scientific Computing, 2001, 16 (4) : 411 - 433
  • [17] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254
  • [18] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 354 - 403
  • [19] DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR NUMERICAL SIMULATIONS OF THERMOELASTICITY
    Hao, Zeng-rong
    Gu, Chun-wei
    Song, Yin
    JOURNAL OF THERMAL STRESSES, 2015, 38 (09) : 983 - 1004
  • [20] AUTOMATIC SYMBOLIC COMPUTATION FOR DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS
    Houston, Paul
    Sime, Nathan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : C327 - C357