Superconvergence for discontinuous Galerkin finite element methods by L2-projection methods

被引:0
作者
Jari, Rabeea [1 ]
Mu, Lin [1 ]
Harris, Anna [1 ]
Fox, Lynn [1 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA
关键词
DG finite element methods; Superconvergence; L-2-projection; Elliptic problem; 2ND-ORDER ELLIPTIC PROBLEMS; PATCH RECOVERY; ERROR; APPROXIMATIONS; PROJECTIONS; EQUATIONS; GRADIENT;
D O I
10.1016/j.camwa.2012.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general superconvergence of discontinuous Galerkin (DG) finite element method for the elliptic problem is established by using L-2-projection method. Regularity assumptions for the elliptic problem with regular partitions are required. Numerical experiments are given to verify the theoretical results. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2000, J. Math. Study
[2]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[3]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[4]  
Brezzi F, 2000, NUMER METH PART D E, V16, P365, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO
[5]  
2-Y
[6]  
Chen CM., 1995, HIGH ACCURACY THEORY
[7]   Unified analysis of finite volume methods for second order elliptic problems [J].
Chou, So-Hsiang ;
Ye, Xiu .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1639-1653
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]  
Claes J., 2009, Numerical Solution of partial Differential Equations by the Finite Element Method
[10]  
Douglas A., 2002, SIAM NUMERICAL ANAL, V39, P1749