Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach

被引:54
作者
Gaitonde, V. N. [1 ]
Karnik, S. R. [2 ]
机构
[1] BVB Coll Engn & Technol, Dept Ind & Prod Engn, Hubli 580031, Karnataka, India
[2] BVB Coll Engn & Technol, Dept Elect & Elect Engn, Hubli 580031, Karnataka, India
关键词
Drilling; Burr size; Fitness function; Artificial neural network (ANN); Particle swarm optimization (PSO); 316L STAINLESS-STEEL; TAGUCHI OPTIMIZATION; CUTTING CONDITIONS; PROCESS PARAMETERS; ANN; MACHINABILITY;
D O I
10.1007/s10845-010-0481-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The burrs at the hole exit degrade the performance in precision part and affect the reliability of the product. Hence, it is essential to select the optimal process parameters for minimal burr size at the manufacturing stage so as to reduce the deburring cost and time. This paper illustrates the application of particle swarm optimization (PSO) to select the best combination values of feed and point angle for a specified drill diameter in order to simultaneously minimize burr height and burr thickness during drilling of AISI 316L stainless steel. The burr size models required for the PSO optimization were developed using artificial neural network (ANN) with the drilling experiments planned as per full factorial design (FFD). The PSO optimization results clearly indicate the importance of larger point angle for bigger drill diameter values in controlling the burr size.
引用
收藏
页码:1783 / 1793
页数:11
相关论文
共 37 条
[1]   Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models [J].
Davim, J. Paulo ;
Gaitonde, V. N. ;
Karnik, S. R. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 205 (1-3) :16-23
[2]  
Dornfeld D.A., 2001, T NAMRI SME, V28, P317
[3]  
Dornfeld D.A., 1999, ANN CIRP, V52, P45
[4]   Comparison among five evolutionary-based optimization algorithms [J].
Elbeltagi, E ;
Hegazy, T ;
Grierson, D .
ADVANCED ENGINEERING INFORMATICS, 2005, 19 (01) :43-53
[5]  
Fausett L., 1994, Fundamentals of neural networks: architectures, algorithms, and applications
[6]   Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function [J].
Gaitonde, V. N. ;
Karnik, S. R. ;
Achyutha, B. T. ;
Siddeswarappa, B. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 202 (1-3) :374-379
[7]   Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size [J].
Gaitonde, V. N. ;
Karnik, S. R. ;
Achyutha, B. T. ;
Siddeswarappa, B. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 34 (1-2) :1-8
[8]  
Gaitonde V. N., 2007, International Journal of Manufacturing Research, V2, P209, DOI 10.1504/IJMR.2007.014646
[9]   Study on the influence of MQL and cutting conditions on machinability of brass using Artificial Neural Network [J].
Gaitonde, V. N. ;
Karnik, S. R. ;
Davim, J. Paulo .
INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2010, 37 (1-2) :155-172
[10]   Predicting burr size in drilling of AISI 316L stainless steel using response surface analysis [J].
Gaitonde, V. N. ;
Karnik, S. R. ;
Achyutha, B. T. ;
Siddeswarappa, B. ;
Davim, J. Paulo .
INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2) :228-245