Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

被引:22
作者
Baykara, Mehmet Z. [1 ,2 ,3 ]
Dagdeviren, Omur E. [1 ,2 ]
Schwendemann, Todd C. [4 ]
Moenig, Harry [1 ,2 ,5 ]
Altman, Eric I. [2 ,6 ]
Schwarz, Udo D. [1 ,2 ,6 ]
机构
[1] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06520 USA
[2] Yale Univ, CRISP, New Haven, CT 06520 USA
[3] Bilkent Univ, Dept Mech Engn, TR-06800 Ankara, Turkey
[4] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA
[5] Univ Munster, Inst Phys, Ctr Nanotechnol CeNTech, D-48149 Munster, Germany
[6] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2012年 / 3卷
基金
美国国家科学基金会;
关键词
atomic force microscopy; force spectroscopy; NC-AFM; three-dimensional atomic force microscopy; tip asymmetry; tip elasticity; SCANNING TUNNELING MICROSCOPE; CHEMICAL-IDENTIFICATION; MOLECULES; SIMULATION; IMAGES; TIP;
D O I
10.3762/bjnano.3.73
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 65 条
  • [1] Room-temperature reproducible spatial force spectroscopy using atom-tracking technique
    Abe, M
    Sugimoto, Y
    Custance, O
    Morita, S
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (17) : 1 - 3
  • [2] Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy
    Abe, Masayuki
    Sugimoto, Yoshiaki
    Namikawa, Takashi
    Morita, Kenichi
    Oyabu, Noriaki
    Morita, Seizo
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (20)
  • [3] Predicting trends in rate parameters for self-diffusion on FCC metal surfaces
    Agrawal, PM
    Rice, BM
    Thompson, DL
    [J]. SURFACE SCIENCE, 2002, 515 (01) : 21 - 35
  • [4] CORRECTION FOR NONLINEAR BEHAVIOR OF PIEZOELECTRIC TUBE SCANNERS USED IN SCANNING TUNNELING AND ATOMIC-FORCE MICROSCOPY
    AKILA, J
    WADHWA, SS
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (03) : 2517 - 2519
  • [5] Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions
    Albers, Boris J.
    Schwendemann, Todd C.
    Baykara, Mehmet Z.
    Pilet, Nicolas
    Liebmann, Marcus
    Altman, Eric I.
    Schwarz, Udo D.
    [J]. NANOTECHNOLOGY, 2009, 20 (26)
  • [6] Albers BJ, 2009, NAT NANOTECHNOL, V4, P307, DOI [10.1038/NNANO.2009.57, 10.1038/nnano.2009.57]
  • [7] Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy
    Albers, Boris J.
    Liebmann, Marcus
    Schwendemann, Todd C.
    Baykara, Mehmet Z.
    Heyde, Markus
    Salmeron, Miquel
    Altman, Eric I.
    Schwarz, Udo D.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (03)
  • [8] Allen M. P., 1989, Computer Simulation of Liquids, DOI DOI 10.1007/BF00646086
  • [9] [Anonymous], MATL COMP ENV PROGR
  • [10] Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips
    Arai, T.
    Gritschneder, S.
    Troeger, L.
    Reichling, M.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06): : 1279 - 1283