Freelance Model with Atangana-Baleanu Caputo Fractional Derivative

被引:13
|
作者
Khan, Fareeha Sami [1 ]
Khalid, M. [1 ]
Al-moneef, Areej A. [2 ]
Ali, Ali Hasan [3 ,4 ]
Bazighifan, Omar [5 ,6 ,7 ]
机构
[1] Fed Urdu Univ Arts Sci & Technol, Dept Math Sci, Karachi 75300, Pakistan
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Univ Basrah, Coll Educ Pure Sci, Dept Math, Basrah 61001, Iraq
[4] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
[5] Hadhramout Univ, Fac Sci, Dept Math, Hadhramout 50512, Yemen
[6] Seiyun Univ, Fac Educ, Dept Math, Hadhramout 50512, Yemen
[7] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
Atangana-Baleanu fractional derivative; local stability; differential equation; uniqueness and existence; fractional Euler's method; numerical method; ANOMALOUS DIFFUSION;
D O I
10.3390/sym14112424
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As technology advances and the Internet makes our world a global village, it is important to understand the prospective career of freelancing. A novel symmetric fractional mathematical model is introduced in this study to describe the competitive market of freelancing and the significance of information in its acceptance. In this study, fixed point theory is applied to analyze the uniqueness and existence of the fractional freelance model. Its numerical solution is derived using the fractional Euler's method, and each case has been presented graphically as well as tabular. Further, the results have been compared with the classic freelance model and real data to show the importance of this model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [2] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [3] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Manish Goyal
    Amit Kumar Saraswat
    Amit Prakash
    Indian Journal of Physics, 2023, 97 : 147 - 164
  • [4] Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model
    Algahtani, Obaid Jefain Julaighim
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 552 - 559
  • [5] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53
  • [6] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Goyal, M.
    Saraswat, A. K.
    Prakash, A.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (01) : 147 - 164
  • [7] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [8] An epidemiological model for computer virus with Atangana-Baleanu fractional derivative
    Ravichandran, C.
    Logeswari, K.
    Khan, Aziz
    Abdeljawad, Thabet
    Gomez-Aguilar, J. F.
    RESULTS IN PHYSICS, 2023, 51
  • [9] Numerical approximations of Atangana-Baleanu Caputo derivative and its application
    Yadav, Swati
    Pandey, Rajesh K.
    Shukla, Anil K.
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 58 - 64
  • [10] Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
    Saif Ullah
    Muhammad Altaf Khan
    Muhammad Farooq
    The European Physical Journal Plus, 133