PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment

被引:1008
作者
Wang, Kaixin [1 ]
Liew, Jun Hao [2 ]
Zou, Yingtian [2 ]
Zhou, Daquan [1 ]
Feng, Jiashi [2 ]
机构
[1] Natl Univ Singapore, NGS, Singapore, Singapore
[2] Natl Univ Singapore, ECE Dept, Singapore, Singapore
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
D O I
10.1109/ICCV.2019.00929
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the great progress made by deep CNNs in image semantic segmentation, they typically require a large number of densely-annotated images for training and are difficult to generalize to unseen object categories. Few-shot segmentation has thus been developed to learn to perform segmentation from only a few annotated examples. In this paper, we tackle the challenging few-shot segmentation problem from a metric learning perspective and present PANet, a novel prototype alignment network to better utilize the information of the support set. Our PANet learns classspecific prototype representations from a few support images within an embedding space and then performs segmentation over the query images through matching each pixel to the learned prototypes. With non-parametric metric learning, PANet offers high-quality prototypes that are representative for each semantic class and meanwhile discriminative for different classes. Moreover, PANet introduces a prototype alignment regularization between support and query. With this, PANet fully exploits knowledge from the support and provides better generalization on few-shot segmentation. Significantly, our model achieves the mIoU score of 48.1% and 55.7% on PASCAL-5i for 1-shot and 5-shot settings respectively, surpassing the state-of-the-art method by 1.8% and 8.6%.
引用
收藏
页码:9196 / 9205
页数:10
相关论文
共 29 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]   BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation [J].
Dai, Jifeng ;
He, Kaiming ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1635-1643
[4]  
Dong E. P., 2018, BMVC, V3, P1
[5]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[6]  
Finn C, 2017, PR MACH LEARN RES, V70
[7]  
Garcia Victor, 2018, 6 INT C LEARNING REP
[8]  
Hariharan Bharath, 2011, SEMANTIC CONTOURS IN
[9]  
Hu Pengwan Tao, 2018, ATTENTION BASED MULT
[10]  
Koltun V, 2015, ARXIV PREPRINT ARXIV