Monte Carlo simulation study of electron yields from compound semiconductor materials

被引:32
作者
Hussain, A. [1 ,2 ]
Yang, L. H. [1 ,2 ]
Zou, Y. B. [3 ]
Mao, S. F. [4 ]
Da, B. [5 ]
Li, H. M. [6 ]
Ding, Z. J. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[3] Xinjiang Normal Univ, Sch Phys & Elect Engn, Urumqi 830054, Xinjiang, Peoples R China
[4] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[5] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat CMI2, Res & Serv Div Mat Data & Integrated Syst MaDIS, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[6] Univ Sci & Technol China, Super Computat Ctr, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN FREE PATHS; SECONDARY-ELECTRON; OPTICAL-PROPERTIES; ATOMIC-NUMBER; ENERGY-DISTRIBUTION; ELEMENTAL SOLIDS; THIN-FILMS; SCATTERING; EMISSION; IMAGES;
D O I
10.1063/5.0012154
中图分类号
O59 [应用物理学];
学科分类号
摘要
A systematic study has been performed based on a Monte Carlo simulation for the investigation of secondary electron yields, backscattering coefficients, and total electron yields for eight compound semiconductor materials, i.e., AlN, TiN, VN, VC, GaAs, InAs, InSb, and PbS, at different incident electron energies in the range 0.1-10keV. Our Monte Carlo simulation model is based on the Mott cross section for electron elastic scattering as calculated by a partial wave method and a dielectric functional approach to electron inelastic scattering with the full Penn algorithm. We used Palik's optical data for lower photon energies below 100 eVs and Henke's data for higher photon energies. The cascade production of secondary electrons in electron inelastic scattering and low energy is included in the simulation. The simulated results of electron backscattering coefficients are compared with the experimental data available in the literature. Considering the fact that the experimental data for these compound materials are not available, we have compared them with experimental data for elements having the nearest mean atomic numbers. The simulation predicted much larger backscattering coefficient values than the empirical Staub formula.
引用
收藏
页数:14
相关论文
共 98 条
[1]  
Agrawal R, 2017, ACTA OPHTHALMOL, V95, pe597, DOI DOI 10.1103/PHYSREVB.95.195417
[2]   Electrical and optical properties of InSb/GaAs QDSC for photovoltaic [J].
Aissat, A. ;
Benyettou, F. ;
Vilcot, J. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) :19518-19524
[3]   SECONDARY ELECTRON-ESCAPE PROBABILITIES [J].
ALIG, RC ;
BLOOM, S .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (06) :3476-3480
[4]  
[Anonymous], 2017, EUR J TRANSL MYOL, V27, p7X, DOI DOI 10.1002/ADFM.201703687
[5]  
[Anonymous], THESIS
[6]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[7]  
Baglin V., 2000, 7 EUR PART ACC C
[8]   26.1% thin-film GaAs solar cell using epitaxial lift-off [J].
Bauhuis, G. J. ;
Mulder, P. ;
Haverkamp, E. J. ;
Huijben, J. C. C. M. ;
Schermer, J. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (09) :1488-1491
[9]  
Bruining H., 1962, PHYS APPL SECONDARY
[10]  
BUCHNER AR, 1973, ARCH EISENHUTTENWES, V44, P143