Emergence of Diversity and Its Benefits for Crossover in Genetic Algorithms

被引:12
作者
Duc-Cuong Dang [1 ]
Friedrich, Tobias [2 ]
Koetzing, Timo [2 ]
Krejca, Martin S. [2 ]
Lehre, Per Kristian [1 ]
Oliveto, Pietro S. [3 ]
Sudholt, Dirk [3 ]
Sutton, Andrew M. [2 ]
机构
[1] Univ Nottingham, Nottingham, England
[2] Hasso Plattner Inst, Potsdam, Germany
[3] Univ Sheffield, Sheffield, S Yorkshire, England
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV | 2016年 / 9921卷
基金
英国工程与自然科学研究理事会;
关键词
Genetic algorithms; Crossover; Diversity; Runtime analysis; Theory;
D O I
10.1007/978-3-319-45823-6_83
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population diversity is essential for avoiding premature convergence in Genetic Algorithms (GAs) and for the effective use of crossover. Yet the dynamics of how diversity emerges in populations are not well understood. We use rigorous runtime analysis to gain insight into population dynamics and GA performance for a standard (mu+1) GA and the Jump(k) test function. By studying the stochastic process underlying the size of the largest collection of identical genotypes we show that the interplay of crossover followed by mutation may serve as a catalyst leading to a sudden burst of diversity. This leads to improvements of the expected optimisation time of order Omega(n/log n) compared to mutationonly algorithms like the (1+1) EA.
引用
收藏
页码:890 / 900
页数:11
相关论文
共 9 条
  • [1] Auger A., 2011, Theory of randomized search heuristics: Foundations and recent developments
  • [2] Corus D, 2014, LECT NOTES COMPUT SC, V8672, P912
  • [3] Dang D.-D., 2016, GECCO 2016 IN PRESS
  • [4] On the analysis of the (1+1) evolutionary algorithm
    Droste, S
    Jansen, T
    Wegener, I
    [J]. THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) : 51 - 81
  • [5] Analysis of Diversity-Preserving Mechanisms for Global Exploration
    Friedrich, Tobias
    Oliveto, Pietro S.
    Sudholt, Dirk
    Witt, Carsten
    [J]. EVOLUTIONARY COMPUTATION, 2009, 17 (04) : 455 - 476
  • [6] The analysis of evolutionary algorithms - A proof that crossover really can help
    Jansen, T
    Wegener, I
    [J]. ALGORITHMICA, 2002, 34 (01) : 47 - 66
  • [7] Kötzing T, 2011, GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P989
  • [8] Lehre P. K., 2015, P FDN GEN ALG FOG 15, P3
  • [9] Analysis of diversity mechanisms for optimisation in dynamic environments with low frequencies of change
    Oliveto, Pietro S.
    Zarges, Christine
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 561 : 37 - 56