The class cover problem with boxes

被引:14
作者
Bereg, S. [2 ]
Cabello, S. [3 ,4 ]
Diaz-Banez, J. M. [5 ]
Perez-Lantero, P. [1 ]
Seara, C. [6 ]
Ventura, I. [5 ]
机构
[1] Univ Valparaiso, Escuela Ingn Civil Informat, Valparaiso, Chile
[2] Univ Texas Dallas, Dept Comp Sci, Dallas, TX 75230 USA
[3] Univ Ljubljana, Dept Math, IMFM, Ljubljana 61000, Slovenia
[4] Univ Ljubljana, Dept Math, FMF, Ljubljana 61000, Slovenia
[5] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[6] Univ Politecn Cataluna, Dept Matemat Aplicada 2, E-08028 Barcelona, Spain
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2012年 / 45卷 / 07期
关键词
Class cover; Classification; Boxes; Geometric optimization; epsilon-nets; APPROXIMATION ALGORITHMS; EPSILON-NETS;
D O I
10.1016/j.comgeo.2012.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following problem: Given sets R and B of r red and b blue points respectively in the plane, find a minimum-cardinality set H of axis-aligned rectangles (boxes) so that every point in B is covered by at least one rectangle of H, and no rectangle of H contains a point of R. We prove the NP-hardness of the stated problem, and give either exact or approximate algorithms depending on the type of rectangles considered. If the covering boxes are vertical or horizontal strips we give an efficient algorithm that runs in O(r log r + blog b + root rb) time. For covering with oriented half-strips an optimal O((r + b)log(min{r, b}))-time algorithm is shown. We prove that the problem remains NP-hard if the covering boxes are half-strips oriented in any of the four orientations, and show that there exists an O(1)-approximation algorithm. We also give an NP-hardness proof if the covering boxes are squares. In this situation, we show that there exists an O(1)-approximation algorithm. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 304
页数:11
相关论文
共 27 条
  • [1] AGARWAL PK, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P24
  • [2] Aggarwal A, 1987, P 3 ANN S COMP GEOM, P278, DOI DOI 10.1145/41958.41988
  • [3] Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
  • [4] [Anonymous], 1990, COMPUT INTRACTABILIT
  • [5] [Anonymous], THESIS
  • [6] Some lower bounds on geometric separability problems
    Arkin, EM
    Hurtado, F
    Mitchell, JSB
    Seara, C
    Skiena, SS
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2006, 16 (01) : 1 - 26
  • [7] SMALL-SIZE ε-NETS FOR AXIS-PARALLEL RECTANGLES AND BOXES
    Aronov, Boris
    Ezra, Esther
    Sharir, Micha
    [J]. SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 3248 - 3282
  • [8] Aupperle L. J., 1988, Proceedings. Twenty-Sixth Annual Allerton Conference on Communication, Control, and Computing, P97
  • [9] The Mono- and Bichromatic Empty Rectangle and Square Problems in All Dimensions (Extended Abstract)
    Backer, Jonathan
    Keil, J. Mark
    [J]. LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 14 - 25
  • [10] Bautista-Santiago C., 2008, COVERING CLASS UNPUB