On cell modules of symmetric cellular algebras

被引:7
作者
Li, Yanbo [1 ]
Xiao, Zhankui [2 ]
机构
[1] NE Univ Qinhuangdao, Dept Informat & Comp Sci, Qinhuangdao 066004, Peoples R China
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2012年 / 168卷 / 01期
关键词
Cell modules; Symmetric cellular algebras; Projective modules; HECKE ALGEBRAS;
D O I
10.1007/s00605-011-0349-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a symmetric cellular algebra with cell datum (I >, M, C, i) and let . We prove that I >(1) consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved in Li (arxiv: math0911.3524, 2009) that the dual basis of is again cellular. In this paper, we will study the cell modules defined by dual basis. In particular, we study the dual basis of the Murphy basis.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 19 条
  • [1] [Anonymous], 2000, Characters of finite Coxeter groups and Iwahori-Hecke algebras
  • [2] Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
  • [3] Brundan J., ARXIVMATH08061532V1
  • [4] DIPPER R, 1986, P LOND MATH SOC, V52, P20
  • [5] THE HOOK GRAPHS OF THE SYMMETRIC GROUP
    FRAME, JS
    ROBINSON, GD
    THRALL, RM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03): : 316 - 324
  • [6] Hecke algebras of finite type are cellular
    Geck, Meinolf
    [J]. INVENTIONES MATHEMATICAE, 2007, 169 (03) : 501 - 517
  • [7] Cellularity of cyclotomic Birman-Wenzl-Murakami algebras
    Goodman, Frederick M.
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (11) : 3299 - 3320
  • [8] Graham J. J., 1995, THESIS SYDNEY U
  • [9] Cellular algebras
    Graham, JJ
    Lehrer, GI
    [J]. INVENTIONES MATHEMATICAE, 1996, 123 (01) : 1 - 34
  • [10] A q-analogue of the Jantzen-Schaper theorem
    James, G
    Mathas, A
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 74 : 241 - 274