Least Squares Superposition Codes of Moderate Dictionary Size Are Reliable at Rates up to Capacity

被引:81
作者
Joseph, Antony [1 ]
Barron, Andrew R. [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
关键词
Achieving capacity; compressed sensing; exponential error bounds; Gaussian channel; maximum likelihood estimation; subset selection; INFORMATION-THEORETIC LIMITS; PARITY-CHECK CODES; SIGNAL RECOVERY; SPARSITY RECOVERY; MODEL SELECTION; REPRESENTATIONS; APPROXIMATION; CONSISTENCY; REGRESSION; ALGORITHM;
D O I
10.1109/TIT.2012.2184847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the additive white Gaussian noise channel with average codeword power constraint, coding methods are analyzed in which the codewords are sparse superpositions, that is, linear combinations of subsets of vectors from a given design, with the possible messages indexed by the choice of subset. Decoding is by least squares (maximum likelihood), tailored to the assumed form of codewords being linear combinations of elements of the design. Communication is shown to be reliable with error probability exponentially small for all rates up to the Shannon capacity.
引用
收藏
页码:2541 / 2557
页数:17
相关论文
共 72 条
  • [51] CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    Needell, D.
    Tropp, J. A.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) : 301 - 321
  • [52] PATI YC, 1993, CONFERENCE RECORD OF THE TWENTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, P40, DOI 10.1109/ACSSC.1993.342465
  • [53] A distance spectrum interpretation of Turbo codes
    Perez, LC
    Seghers, J
    Costello, DJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1698 - 1709
  • [54] Channel Coding Rate in the Finite Blocklength Regime
    Polyanskiy, Yury
    Poor, H. Vincent
    Verdu, Sergio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) : 2307 - 2359
  • [55] POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS
    REED, IS
    SOLOMON, G
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (02): : 300 - 304
  • [56] Sampling Bounds for Sparse Support Recovery in the Presence of Noise
    Reeves, Galen
    Gastpar, Michael
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2187 - 2191
  • [57] Design of capacity-approaching irregular low-density parity-check codes
    Richardson, TJ
    Shokrollahi, MA
    Urbanke, RL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) : 619 - 637
  • [58] The capacity of low-density parity-check codes under message-passing decoding
    Richardson, TJ
    Urbanke, RL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) : 599 - 618
  • [59] RIMOLDI B, 2001, IEEE T INFORM THEORY, V47, P364
  • [60] A MATHEMATICAL THEORY OF COMMUNICATION
    SHANNON, CE
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03): : 379 - 423