Spin-selective transport through helical molecular systems

被引:222
作者
Gutierrez, R. [1 ]
Diaz, E. [1 ,2 ]
Naaman, R. [3 ]
Cuniberti, G. [1 ,4 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Univ Complutense, GISC, Dept Fis Mat, E-28040 Madrid, Spain
[3] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[4] Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Natl Ctr Nanomat Technol, Pohang 790784, South Korea
基金
以色列科学基金会;
关键词
ELECTRONS;
D O I
10.1103/PhysRevB.85.081404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly spin-selective transport of electrons through a helically shaped electrostatic potential is demonstrated in the frame of a minimal model approach. The effect is significant even for weak spin-orbit coupling. Two main factors determine the selectivity: an unconventional Rashba-like spin-orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic band of the helical system. The weak electronic coupling, associated with the small dispersion, leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions to be effective. The results are expected to be generic for chiral molecular systems displaying low spin-orbit coupling and low conductivity.
引用
收藏
页数:4
相关论文
共 19 条
  • [1] Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles
    Bihlmayer, G.
    Bluegel, S.
    Chulkov, E. V.
    [J]. PHYSICAL REVIEW B, 2007, 75 (19)
  • [2] ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR
    DATTA, S
    DAS, B
    [J]. APPLIED PHYSICS LETTERS, 1990, 56 (07) : 665 - 667
  • [3] Spin-orbit coupling and electron spin resonance theory for carbon nanotubes
    De Martino, A
    Egger, R
    Hallberg, K
    Balseiro, CA
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (20) : 2064021 - 2064024
  • [4] Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA
    Goehler, B.
    Hamelbeck, V.
    Markus, T. Z.
    Kettner, M.
    Hanne, G. F.
    Vager, Z.
    Naaman, R.
    Zacharias, H.
    [J]. SCIENCE, 2011, 331 (6019) : 894 - 897
  • [5] Charge Transport through Biomolecular Wires in a Solvent: Bridging Molecular Dynamics and Model Hamiltonian Approaches
    Gutierrez, R.
    Caetano, R. A.
    Woiczikowski, B. P.
    Kubar, T.
    Elstner, M.
    Cuniberti, G.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [6] Representing structural information of helical charge distributions in cylindrical coordinates
    Hochberg, D
    Edwards, G
    Kephart, TW
    [J]. PHYSICAL REVIEW E, 1997, 55 (03): : 3765 - 3768
  • [7] Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps
    Huertas-Hernando, Daniel
    Guinea, F.
    Brataas, Arne
    [J]. PHYSICAL REVIEW B, 2006, 74 (15)
  • [8] Quantum spin Hall effect in graphene
    Kane, CL
    Mele, EJ
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [9] Coupling of spin and orbital motion of electrons in carbon nanotubes
    Kuemmeth, F.
    Ilani, S.
    Ralph, D. C.
    McEuen, P. L.
    [J]. NATURE, 2008, 452 (7186) : 448 - 452
  • [10] Tunable spin-splitting and spin-resolved ballistic transport in GaAs/AlGaAs two-dimensional holes
    Lu, JP
    Yau, JB
    Shukla, SP
    Shayegan, M
    Wissinger, L
    Rossler, U
    Winkler, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (06) : 1282 - 1285