Spin-selective transport through helical molecular systems

被引:230
作者
Gutierrez, R. [1 ]
Diaz, E. [1 ,2 ]
Naaman, R. [3 ]
Cuniberti, G. [1 ,4 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Univ Complutense, GISC, Dept Fis Mat, E-28040 Madrid, Spain
[3] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[4] Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Natl Ctr Nanomat Technol, Pohang 790784, South Korea
基金
以色列科学基金会;
关键词
ELECTRONS;
D O I
10.1103/PhysRevB.85.081404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Highly spin-selective transport of electrons through a helically shaped electrostatic potential is demonstrated in the frame of a minimal model approach. The effect is significant even for weak spin-orbit coupling. Two main factors determine the selectivity: an unconventional Rashba-like spin-orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic band of the helical system. The weak electronic coupling, associated with the small dispersion, leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions to be effective. The results are expected to be generic for chiral molecular systems displaying low spin-orbit coupling and low conductivity.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles [J].
Bihlmayer, G. ;
Bluegel, S. ;
Chulkov, E. V. .
PHYSICAL REVIEW B, 2007, 75 (19)
[2]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667
[3]   Spin-orbit coupling and electron spin resonance theory for carbon nanotubes [J].
De Martino, A ;
Egger, R ;
Hallberg, K ;
Balseiro, CA .
PHYSICAL REVIEW LETTERS, 2002, 88 (20) :2064021-2064024
[4]   Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA [J].
Goehler, B. ;
Hamelbeck, V. ;
Markus, T. Z. ;
Kettner, M. ;
Hanne, G. F. ;
Vager, Z. ;
Naaman, R. ;
Zacharias, H. .
SCIENCE, 2011, 331 (6019) :894-897
[5]   Charge Transport through Biomolecular Wires in a Solvent: Bridging Molecular Dynamics and Model Hamiltonian Approaches [J].
Gutierrez, R. ;
Caetano, R. A. ;
Woiczikowski, B. P. ;
Kubar, T. ;
Elstner, M. ;
Cuniberti, G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[6]   Representing structural information of helical charge distributions in cylindrical coordinates [J].
Hochberg, D ;
Edwards, G ;
Kephart, TW .
PHYSICAL REVIEW E, 1997, 55 (03) :3765-3768
[7]   Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps [J].
Huertas-Hernando, Daniel ;
Guinea, F. ;
Brataas, Arne .
PHYSICAL REVIEW B, 2006, 74 (15)
[8]   Quantum spin Hall effect in graphene [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[9]   Coupling of spin and orbital motion of electrons in carbon nanotubes [J].
Kuemmeth, F. ;
Ilani, S. ;
Ralph, D. C. ;
McEuen, P. L. .
NATURE, 2008, 452 (7186) :448-452
[10]   Tunable spin-splitting and spin-resolved ballistic transport in GaAs/AlGaAs two-dimensional holes [J].
Lu, JP ;
Yau, JB ;
Shukla, SP ;
Shayegan, M ;
Wissinger, L ;
Rossler, U ;
Winkler, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1282-1285