Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes

被引:40
作者
Chen, Xu [1 ,2 ]
Chen, Shen [3 ]
Shen, Tianran [4 ]
Yang, Wenqi [5 ]
Chen, Qian [1 ,2 ,6 ]
Zhang, Peiwen [1 ,2 ]
You, Yiran [1 ,2 ]
Sun, Xiaoyuan [1 ,2 ]
Xu, Huihui [1 ,2 ]
Tang, Yi [1 ,2 ]
Mi, Jiaxin [1 ,2 ]
Yang, Yan [1 ,2 ,7 ]
Ling, Wenhua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Nutr, Sch Publ Hlth, North Campus,74 Zhongshan Rd 2, Guangzhou 510080, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Food Nutr & Hlth, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Publ Hlth, Dept Toxicol, Guangzhou, Peoples R China
[4] Guangdong Pharmaceut Univ, Sch Publ Hlth, Dept Nutr, Guangzhou, Peoples R China
[5] Guangzhou Inst Phys Educ, Lab Ctr Sport Sci & Med, Guangzhou, Peoples R China
[6] Sun Yat Sen Mem Hosp, Dept Cardiol, Guangzhou, Peoples R China
[7] Sun Yat Sen Univ, Sch Publ Hlth Shenzhen, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
AMPK; diabetes; gluconeogenesis; obesity; ACTIVATED PROTEIN-KINASE; CATALYTIC SUBUNIT; TRANSCRIPTION; AMPK; GLUCONEOGENESIS; CREB; METABOLISM; LIVER; ADIPONECTIN; DISRUPTION;
D O I
10.1096/fj.202000115RR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adropin as a secretory peptide has shown a protective role on the disorders of glucose and lipid metabolism. However, the role and mechanism of this peptide on the hepatic glucose production has remained unclear. Adropin knockout (KO) mice were generated to explore its effects on the enhanced hepatic glucose production in obesity. We found that compared to wild-type (WT) mice, adropin-KO mice developed the unbalanced enhanced hepatic glucose production in advance of the whole-body insulin resistance (IR) by high-fat diet (HFD). Mechanistically, adropin dissociated CREB-CRTC2 and FoxO1-PGC1 alpha complex and reduced their binding to the promoters of G6Pase and PEPCK to decrease glucose production in IR. However, these effects were not observed in insulin-sensitive hepatocytes. Furthermore, in IR hepatocytes, dampened AMPK signaling was re-activated by adropin treatment via inhibition of PP2A. To further authenticate AMPK role in vivo, we administrated HFD-fed mice with AAV8-CA AMPK alpha and found that AMPK activation functionally restored the aberrant glucose production and IR induced by adropin-deficiency. This study provides evidence that adropin activates the AMPK pathway via inhibition of PP2A and decreases the liver glucose production in IR context. Therefore, adropin may represent a novel target for the prevention and treatment of diabetes.
引用
收藏
页码:10056 / 10072
页数:17
相关论文
共 41 条
[21]   AMPK-dependent Repression of Hepatic Gluconeogenesis via Disruption of CREB•CRTC2 Complex by Orphan Nuclear Receptor Small Heterodimer Partner [J].
Lee, Ji-Min ;
Seo, Woo-Young ;
Song, Kwang-Hoon ;
Chanda, Dipanjan ;
Kim, Yong Deuk ;
Kim, Don-Kyu ;
Lee, Min-Woo ;
Ryu, Dongryeol ;
Kim, Yong-Hoon ;
Noh, Jung-Ran ;
Lee, Chul-Ho ;
Chiang, John Y. L. ;
Koo, Seung-Hoi ;
Choi, Hueng-Sik .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (42) :32182-32191
[22]   Prevention and Management of Severe Hypoglycemia and Hypoglycemia Unawareness: Incorporating Sensor Technology [J].
Lucidi, Paola ;
Porcellati, Francesca ;
Bolli, Geremia B. ;
Fanelli, Carmine G. .
CURRENT DIABETES REPORTS, 2018, 18 (10)
[23]   Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase [J].
Madiraju, Anila K. ;
Erion, Derek M. ;
Rahimi, Yasmeen ;
Zhang, Xian-Man ;
Braddock, Demetrios T. ;
Albright, Ronald A. ;
Prigaro, Brett J. ;
Wood, John L. ;
Bhanot, Sanjay ;
MacDonald, Michael J. ;
Jurczak, Michael J. ;
Camporez, Joao-Paulo ;
Lee, Hui-Young ;
Cline, Gary W. ;
Samuel, Varman T. ;
Kibbey, Richard G. ;
Shulman, Gerald I. .
NATURE, 2014, 510 (7506) :542-+
[24]   Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver [J].
Matsumoto, Michihiro ;
Pocai, Alessandro ;
Rossetti, Luciano ;
DePinho, Ronald A. ;
Accili, Domenico .
CELL METABOLISM, 2007, 6 (03) :208-216
[25]   CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis [J].
Oh, Kyoung-Jin ;
Han, Hye-Sook ;
Kim, Min-Jung ;
Koo, Seung-Hoi .
BMB REPORTS, 2013, 46 (12) :567-574
[26]   Regulation of hepatic glucose metabolism in health and disease [J].
Petersen, Max C. ;
Vatner, Daniel F. ;
Shulman, Gerald I. .
NATURE REVIEWS ENDOCRINOLOGY, 2017, 13 (10) :572-587
[27]   Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction [J].
Puigserver, P ;
Rhee, J ;
Donovan, J ;
Walkey, CJ ;
Yoon, JC ;
Oriente, F ;
Kitamura, Y ;
Altomonte, J ;
Dong, HJ ;
Accili, D ;
Spiegelman, BM .
NATURE, 2003, 423 (6939) :550-555
[28]   Glucose-induced repression of PPARα gene expression in pancreatic β-cells involves PP2A activation and AMPK inactivation [J].
Ravnskjaer, K ;
Boergesen, M ;
Dalgaard, LT ;
Mandrup, S .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2006, 36 (02) :289-299
[29]   Properties and functions of adipose tissue macrophages in obesity [J].
Russo, Lucia ;
Lumeng, Carey N. .
IMMUNOLOGY, 2018, 155 (04) :407-417
[30]   Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes [J].
Scott, John W. ;
van Denderen, Bryce J. W. ;
Jorgensen, Sebastian B. ;
Honeyman, Jane E. ;
Steinberg, Gregory R. ;
Oakhill, Jonathan S. ;
Iseli, Tristan J. ;
Koay, Ann ;
Gooley, Paul R. ;
Stapleton, David ;
Kemp, Bruce E. .
CHEMISTRY & BIOLOGY, 2008, 15 (11) :1220-1230