Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes

被引:40
作者
Chen, Xu [1 ,2 ]
Chen, Shen [3 ]
Shen, Tianran [4 ]
Yang, Wenqi [5 ]
Chen, Qian [1 ,2 ,6 ]
Zhang, Peiwen [1 ,2 ]
You, Yiran [1 ,2 ]
Sun, Xiaoyuan [1 ,2 ]
Xu, Huihui [1 ,2 ]
Tang, Yi [1 ,2 ]
Mi, Jiaxin [1 ,2 ]
Yang, Yan [1 ,2 ,7 ]
Ling, Wenhua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Nutr, Sch Publ Hlth, North Campus,74 Zhongshan Rd 2, Guangzhou 510080, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Food Nutr & Hlth, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Publ Hlth, Dept Toxicol, Guangzhou, Peoples R China
[4] Guangdong Pharmaceut Univ, Sch Publ Hlth, Dept Nutr, Guangzhou, Peoples R China
[5] Guangzhou Inst Phys Educ, Lab Ctr Sport Sci & Med, Guangzhou, Peoples R China
[6] Sun Yat Sen Mem Hosp, Dept Cardiol, Guangzhou, Peoples R China
[7] Sun Yat Sen Univ, Sch Publ Hlth Shenzhen, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
AMPK; diabetes; gluconeogenesis; obesity; ACTIVATED PROTEIN-KINASE; CATALYTIC SUBUNIT; TRANSCRIPTION; AMPK; GLUCONEOGENESIS; CREB; METABOLISM; LIVER; ADIPONECTIN; DISRUPTION;
D O I
10.1096/fj.202000115RR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adropin as a secretory peptide has shown a protective role on the disorders of glucose and lipid metabolism. However, the role and mechanism of this peptide on the hepatic glucose production has remained unclear. Adropin knockout (KO) mice were generated to explore its effects on the enhanced hepatic glucose production in obesity. We found that compared to wild-type (WT) mice, adropin-KO mice developed the unbalanced enhanced hepatic glucose production in advance of the whole-body insulin resistance (IR) by high-fat diet (HFD). Mechanistically, adropin dissociated CREB-CRTC2 and FoxO1-PGC1 alpha complex and reduced their binding to the promoters of G6Pase and PEPCK to decrease glucose production in IR. However, these effects were not observed in insulin-sensitive hepatocytes. Furthermore, in IR hepatocytes, dampened AMPK signaling was re-activated by adropin treatment via inhibition of PP2A. To further authenticate AMPK role in vivo, we administrated HFD-fed mice with AAV8-CA AMPK alpha and found that AMPK activation functionally restored the aberrant glucose production and IR induced by adropin-deficiency. This study provides evidence that adropin activates the AMPK pathway via inhibition of PP2A and decreases the liver glucose production in IR context. Therefore, adropin may represent a novel target for the prevention and treatment of diabetes.
引用
收藏
页码:10056 / 10072
页数:17
相关论文
共 41 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin [J].
Andreelli, F ;
Foretz, M ;
Knauf, C ;
Cani, PD ;
Perrin, C ;
Iglesias, MA ;
Pillot, B ;
Bado, A ;
Tronche, F ;
Mithieux, G ;
Vaulont, S ;
Burcelin, R ;
Viollet, B .
ENDOCRINOLOGY, 2006, 147 (05) :2432-2441
[3]   Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters - Transcription factor FKHR binds the insulin response sequence [J].
Ayala, JE ;
Streeper, RS ;
Desgrosellier, JS ;
Durham, SK ;
Suwanichkul, A ;
Svitek, CA ;
Goldman, JK ;
Barr, FG ;
Powell, DR ;
O'Brien, RM .
DIABETES, 1999, 48 (09) :1885-1889
[4]  
Barthel A, 2002, ENDOCRINOLOGY, V143, P3183, DOI 10.1210/endo.143.8.8792
[5]   Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity [J].
Chen, Xu ;
Xue, Hongliang ;
Fang, Wanjun ;
Chen, Ke ;
Chen, Shen ;
Yang, Wenqi ;
Shen, Tianran ;
Chen, Xuechen ;
Zhang, Peiwen ;
Ling, Wenhua .
REDOX BIOLOGY, 2019, 21
[6]   Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice [J].
Cokorinos, Emily C. ;
Delmore, Jake ;
Reyes, Allan R. ;
Albuquerque, Bina ;
Kjobsted, Rasmus ;
Jorgensen, Nicolas O. ;
Tran, Jean-Luc ;
Jatkar, Aditi ;
Cialdea, Katherine ;
Esquejo, Ryan M. ;
Meissen, John ;
Calabrese, Matthew F. ;
Cordes, Jason ;
Moccia, Robert ;
Tess, David ;
Salatto, Christopher T. ;
Coskran, Timothy M. ;
Opsahl, Alan C. ;
Flynn, Declan ;
Blatnik, Matthew ;
Li, Wenlin ;
Kindt, Erick ;
Foretz, Marc ;
Viollet, Benoit ;
Ward, Jessica ;
Kurumbail, Ravi G. ;
Kalgutkar, Amit S. ;
Wojtaszewski, Jorgen F. P. ;
Cameron, Kimberly O. ;
Miller, Russell A. .
CELL METABOLISM, 2017, 25 (05) :1147-+
[7]   cAMP-responsive Element-binding Protein (CREB)-regulated Transcription Coactivator 2 (CRTC2) Promotes Glucagon Clearance and Hepatic Amino Acid Catabolism to Regulate Glucose Homeostasis [J].
Erion, Derek M. ;
Kotas, Maya E. ;
McGlashon, Jacob ;
Yonemitsu, Shin ;
Hsiao, Jennifer J. ;
Nagai, Yoshio ;
Iwasaki, Takanori ;
Murray, Susan F. ;
Bhanot, Sanjay ;
Cline, Gary W. ;
Samuel, Varman T. ;
Shulman, Gerald I. ;
Gillum, Matthew P. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (22) :16167-16176
[8]   Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state [J].
Foretz, Marc ;
Hebrard, Sophie ;
Leclerc, Jocelyne ;
Zarrinpashneh, Elham ;
Soty, Maud ;
Mithieux, Gilles ;
Sakamoto, Kei ;
Andreelli, Fabrizio ;
Viollet, Benoit .
JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (07) :2355-2369
[9]   Using kinomics to delineate signaling pathways Control of CRTC2/TORC2 by the AMPK family [J].
Fu, Accalia ;
Screaton, Robert A. .
CELL CYCLE, 2008, 7 (24) :3823-3828
[10]   Free Fatty Acid-Induced PP2A Hyperactivity Selectively Impairs Hepatic Insulin Action on Glucose Metabolism [J].
Galbo, Thomas ;
Olsen, Grith Skytte ;
Quistorff, Bjorn ;
Nishimura, Erica .
PLOS ONE, 2011, 6 (11)