Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

被引:37
作者
Webber, Heidi [1 ]
White, Jeffrey W. [2 ]
Kimball, Bruce A. [2 ]
Ewert, Frank [1 ,3 ]
Asseng, Senthold [4 ]
Rezaei, Ehsan Eyshi [1 ,5 ]
Pinter, Paul J., Jr. [6 ]
Hatfield, Jerry L. [7 ]
Reynolds, Matthew P. [8 ]
Ababaei, Behnam [9 ]
Bindi, Marco [10 ]
Doltra, Jordi [11 ]
Ferrise, Roberto [10 ]
Kage, Henning [12 ]
Kassie, Belay T. [4 ]
Kersebaum, Kurt-Christian [3 ]
Luig, Adam [12 ]
Olesen, Jorgen E. [13 ]
Semenov, Mikhail A. [14 ]
Stratonovitch, Pierre [14 ]
Ratjen, Arne M. [12 ]
LaMorte, Robert L. [2 ]
Leavitt, Steven W. [15 ]
Hunsaker, Douglas J. [2 ]
Wall, Gerard W. [2 ]
Martre, Pierre
机构
[1] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, Crop Sci Grp, Katzenburgweg 5, D-53115 Bonn, Germany
[2] ARS, US Arid Land Agr Res Ctr, USDA, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
[3] Leibniz Ctr Agr Landscape Res ZALF, D-15374 Muncheberg, Germany
[4] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[5] Ctr Dev Res ZEF, Walter Flex Str 3, D-53113 Bonn, Germany
[6] USDA ARS, Phoenix, AZ USA
[7] USDA ARS, Natl Lab Agr & Environm, Ames, IA USA
[8] CIMMYT, Int Apdo Postal 6-641, Mexico City 06600, DF, Mexico
[9] Montpellier SupAgro, INRA, UMR LEPSE, F-34060 Montpellier, France
[10] Univ Florence, DiSPAA, Piazzale Cascine 18, I-50144 Florence, Italy
[11] CIFA, Cantabrian Agr Res & Training Ctr, C Heroes 2 Mayo 27, Muriedas 39600, Cantabria, Spain
[12] Chtistian Albrechts Univ, Inst Crop Sci & Plant Breeding, Hermann Rodewald Str 9, D-24118 Kiel, Germany
[13] Aarhus Univ, Dept Agroecol, Blichers Alle 20,POB 50, DK-8830 Tjele, Denmark
[14] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England
[15] Univ Arizona, Lab Tree Ring Res, Tucson, AZ 85721 USA
基金
英国生物技术与生命科学研究理事会;
关键词
Heat stress; Crop model improvement; Heat and drought interactions; Climate change impact assessments; Canopy temperature; Wheat; AIR CO2 ENRICHMENT; ELEVATED CARBON-DIOXIDE; CLIMATE-CHANGE; WATER-USE; WHEAT EVAPOTRANSPIRATION; STOMATAL CONDUCTANCE; FARMING SYSTEMS; SPRING WHEAT; CERES-WHEAT; NITROGEN;
D O I
10.1016/j.fcr.2017.11.005
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 98 条
[1]  
Allen RG., 1998, Journal of Hydrology, V285, P19
[2]   Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate [J].
Amani, I ;
Fischer, RA ;
Reynolds, MP .
JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 1996, 176 (02) :119-129
[3]   Placing bounds on extreme temperature response of maize [J].
Anderson, Christopher J. ;
Babcock, Bruce A. ;
Peng, Yixing ;
Gassman, Philip W. ;
Campbell, Todd D. .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (12)
[4]   Performance of the APSIM-wheat model in Western Australia [J].
Asseng, S ;
Keating, BA ;
Fillery, IRP ;
Gregory, PJ ;
Bowden, JW ;
Turner, NC ;
Palta, JA ;
Abrecht, DG .
FIELD CROPS RESEARCH, 1998, 57 (02) :163-179
[5]   The impact of temperature variability on wheat yields [J].
Asseng, Senthold ;
Foster, Ian ;
Turner, Neil C. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (02) :997-1012
[6]   Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress [J].
Ayeneh, A ;
van Ginkel, M ;
Reynolds, MP ;
Ammar, K .
FIELD CROPS RESEARCH, 2002, 79 (2-3) :173-184
[7]  
Barros V, 2012, MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE CLIMATE CHANGE ADAPTATION, pIX
[8]   INFRARED THERMAL SENSING OF PLANT CANOPIES AS A SCREENING TECHNIQUE FOR DEHYDRATION AVOIDANCE IN WHEAT [J].
BLUM, A ;
MAYER, J ;
GOZLAN, G .
FIELD CROPS RESEARCH, 1982, 5 (02) :137-146
[9]   YIELD STABILITY AND CANOPY TEMPERATURE OF WHEAT GENOTYPES UNDER DROUGHT-STRESS [J].
BLUM, A ;
SHPILER, L ;
GOLAN, G ;
MAYER, J .
FIELD CROPS RESEARCH, 1989, 22 (04) :289-296
[10]   Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize [J].
Carter, Elizabeth K. ;
Melkonian, Jeff ;
Riha, Susan J. ;
Shaw, Stephen B. .
ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (09)