Resolving runaway electron distributions in space, time, and energy

被引:34
作者
Paz-Soldan, C. [1 ]
Cooper, C. M. [2 ]
Aleynikov, P. [3 ]
Eidietis, N. W. [1 ]
Lvovskiy, A. [2 ]
Pace, D. C. [1 ]
Brennan, D. P. [4 ]
Hollmann, E. M. [5 ]
Liu, C. [4 ]
Moyer, R. A. [5 ]
Shiraki, D. [6 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
[3] Max Planck Inst Plasma Phys, Greifswald, Germany
[4] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[5] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
AVALANCHE; TOKAMAK;
D O I
10.1063/1.5024223
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Aleynikov P., 2014, PROCEEDINGS OF THE 2, pTH/P3
  • [2] Generation of runaway electrons during the thermal quench in tokamaks
    Aleynikov, Pavel
    Breizman, Boris N.
    [J]. NUCLEAR FUSION, 2017, 57 (04)
  • [3] Theory of Two Threshold Fields for Relativistic Runaway Electrons
    Aleynikov, Pavel
    Breizman, Boris N.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (15)
  • [4] Stability analysis of runaway-driven waves in a tokamak
    Aleynikov, Pavel
    Breizman, Boris
    [J]. NUCLEAR FUSION, 2015, 55 (04)
  • [5] Damping of relativistic electron beams by synchrotron radiation
    Andersson, F
    Helander, P
    Eriksson, LG
    [J]. PHYSICS OF PLASMAS, 2001, 8 (12) : 5221 - 5229
  • [6] Theory of runaway electrons in ITER: Equations, important parameters, and implications for mitigation
    Boozer, Allen H.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (03)
  • [7] Space dependent, full orbit effects on runaway electron dynamics in tokamak plasmas
    Carbajal, L.
    del-Castillo-Negrete, D.
    Spong, D.
    Seal, S.
    Baylor, L.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (04)
  • [8] RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS
    CONNOR, JW
    HASTIE, RJ
    [J]. NUCLEAR FUSION, 1975, 15 (03) : 415 - 424
  • [9] Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak
    Cooper, C. M.
    Pace, D. C.
    Paz-Soldan, C.
    Commaux, N.
    Eidietis, N. W.
    Hollmann, E. M.
    Shiraki, D.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
  • [10] Numerical characterization of bump formation in the runaway electron tail
    Decker, J.
    Hirvijoki, E.
    Embreus, O.
    Peysson, Y.
    Stahl, A.
    Pusztai, I.
    Fulop, T.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (02)