Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises

被引:156
作者
Pan, Jian [1 ]
Ma, Hao [1 ]
Zhang, Xiao [2 ]
Liu, Qinyao [2 ]
Ding, Feng [2 ]
Chang, Yufang [1 ]
Sheng, Jie [3 ]
机构
[1] Hubei Univ Technol, Sch Elect & Elect Engn, Hubei Key Lab High Efficiency Utilizat Solar Ener, Wuhan 430068, Peoples R China
[2] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[3] Univ Washington, Sch Engn & Technol, Tacoma, WA 98402 USA
基金
中国国家自然科学基金;
关键词
identification; parameter estimation; least squares approximations; gradient methods; autoregressive moving average processes; state-space methods; stochastic processes; multivariable control systems; recursive coupled projection algorithms; multivariable output-error-like system; coloured noises; coupling identification concept; gradient search; projection algorithm; stochastic gradient algorithm; autoregressive moving average noise; input-output data; identification model; hierarchical identification principle; parameter estimation algorithm; coupled relationship; PARAMETER-ESTIMATION ALGORITHM; OPTIMAL DIVIDEND PROBLEM; TIME-DELAY SYSTEMS; ITERATIVE IDENTIFICATION; RELIABILITY-ANALYSIS; BILINEAR-SYSTEMS; CONTROL STRATEGY; MODEL; POWER; OPTIMIZATION;
D O I
10.1049/iet-spr.2019.0481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By combining the coupling identification concept with the gradient search, this study develops a partially coupled generalised extended projection algorithm and a partially coupled generalised extended stochastic gradient algorithm to estimate the parameters of a multivariable output-error-like system with autoregressive moving average noise from input-output data. The key is to divide the identification model into several submodels based on the hierarchical identification principle and to establish the parameter estimation algorithm by using the coupled relationship between these submodels. The simulation test results indicate that the proposed algorithms are effective.
引用
收藏
页码:455 / 466
页数:12
相关论文
共 83 条
  • [1] [Anonymous], 2020, APPL SCI-BASEL, DOI DOI 10.3390/app10010313
  • [2] Identification of Wiener Time Delay Systems Based on Hierarchical Gradient Approach
    Atitallah, Asma
    Bedoui, Saida
    Abderrahim, Kamel
    [J]. IFAC PAPERSONLINE, 2015, 48 (01): : 403 - 408
  • [3] Bedoui S, 2013, IEEE DECIS CONTR P, P4565, DOI 10.1109/CDC.2013.6760596
  • [4] Fault Diagnosis of Train Plug Door Based on a Hybrid Criterion for IMFs Selection and Fractional Wavelet Package Energy Entropy
    Cao, Yuan
    Sun, Yongkui
    Xie, Guo
    Wen, Tao
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 7544 - 7551
  • [5] Bio-Inspired Speed Curve Optimization and Sliding Mode Tracking Control for Subway Trains
    Cao, Yuan
    Wang, Zheng-Chao
    Liu, Feng
    Li, Peng
    Xie, Guo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (07) : 6331 - 6342
  • [6] Effective notch stress method for fatigue assessment of sheet alloy material and bi-material welded joints
    Chang, Yufang
    Sun, Chaojie
    Qiu, Yu
    [J]. THIN-WALLED STRUCTURES, 2020, 151
  • [7] Quadratic stabilization of switched uncertain linear systems: a convex combination approach
    Chang, Yufang
    Zhai, Guisheng
    Fu, Bo
    Xiong, Lianglin
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (05) : 1116 - 1126
  • [8] A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems
    Chen, Guang-Yong
    Gan, Min
    Chen, C. L. Philip
    Li, Han-Xiong
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) : 526 - 537
  • [9] A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation
    Chu, Y. J.
    Mak, C. M.
    [J]. SIGNAL PROCESSING, 2017, 140 : 219 - 225
  • [10] Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering
    Ding, Feng
    Wang, Feifei
    Xu, Ling
    Wu, Minghu
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (03): : 1321 - 1339