Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping

被引:9
作者
Wang, Yingcheng [1 ,2 ,3 ]
Jin, Yuanhao [1 ,2 ,3 ]
Zhang, Tianfu [1 ,2 ,3 ]
Huang, Zhongzheng [1 ,2 ,3 ]
Yang, Haitao [1 ,2 ,3 ]
Wang, Jiaping [1 ,2 ,3 ]
Jiang, Kaili [1 ,2 ,3 ]
Fan, Shoushan [1 ,2 ,3 ]
Li, Qunqing [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL NANOPARTICLES; LIGHT; GOLD; LUMINESCENCE; FLUORESCENCE; NANOCRYSTALS; SPECTROSCOPY; EFFICIENCY; CHEMISTRY; BRIGHT;
D O I
10.1021/acs.jpclett.9b00818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-performance exciton-localized surface plasmon (LSP) coupling system consisting of well-designed plasmonic nanostructures and CdSe/ZnS quantum dots (QDs) was fabricated by first introducing a Ta2O5 layer as both an adhesive coating and coupling medium. It is shown that a larger emission enhancement factor of 6 from CdSe/ZnS QDs can be obtained from the strong coupling effect between QDs and triprism Au nanoarrays and the high scattering efficiency of LSPs without damping. This can be attributed to the matching conditions and a low extinction coefficient with little damping absorption of the Ta2O5 layer in the system. The radiative scattering rate of Gamma(LSPS) can make a contribution to the spontaneous emission rate Gamma and thus improve the internal quantum yield of the QDs. This strategy could be promising for practical application of metal-modified fluorescence enhancement.
引用
收藏
页码:2113 / 2120
页数:15
相关论文
共 46 条
[1]   Microcavity plasmonics: strong coupling of photonic cavities and plasmons [J].
Ameling, Ralf ;
Giessen, Harald .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :141-169
[2]   Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons [J].
Aslan, K ;
Leonenko, Z ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2005, 15 (05) :643-654
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Spectral tuning of plasmon-enhanced silicon quantum dot luminescence [J].
Biteen, JS ;
Lewis, NS ;
Atwater, HA ;
Mertens, H ;
Polman, A .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[5]   Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters [J].
Biteen, JS ;
Pacifici, D ;
Lewis, NS ;
Atwater, HA .
NANO LETTERS, 2005, 5 (09) :1768-1773
[6]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[7]   Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots [J].
Chan, Yang-Hsiang ;
Chen, Jixin ;
Wark, Stacey E. ;
Skiles, Stephanie L. ;
Son, Dong Hee ;
Batteas, James D. .
ACS NANO, 2009, 3 (07) :1735-1744
[8]   Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications [J].
Chandan, H. R. ;
Schiffman, Jessica D. ;
Balakrishna, R. Geetha .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 :1191-1214
[9]  
Edwards D.F., 1985, Handbook of optical constants of solids
[10]   Plasmon-Enhanced Fluorescence from Single Fluorophores End-Linked to Gold Nanorods [J].
Fu, Yi ;
Zhang, Jian ;
Lakowicz, Joseph R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5540-+