Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression

被引:93
作者
Berthelot, Camille [1 ,2 ]
Villar, Diego [3 ]
Horvath, Julie E. [4 ,5 ,6 ]
Odom, Duncan T. [7 ]
Flicek, Paul [1 ,7 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge CB10 1SD, England
[2] CNRS, Ecole Normale Super, Inst Biol, INSERM,UMR8197,U1024, 46 Rue Ulm, F-75230 Paris 05, France
[3] Univ Cambridge, Canc Res UK Cambridge Inst, Robinson Way, Cambridge CB2 0RE, England
[4] North Carolina Cent Univ, Biol & Biomed Sci, Durham, NC 27707 USA
[5] North Carolina Museum Nat Sci, Raleigh, NC 27601 USA
[6] Duke Univ, Evolutionary Anthropol Dept, Durham, NC 27707 USA
[7] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SD, England
基金
欧洲研究理事会; 英国惠康基金;
关键词
TRANSCRIPTION FACTOR-BINDING; ENHANCER ACTIVITY MAPS; RNA-SEQ; TRANSPOSABLE ELEMENTS; MOUSE; PRINCIPLES; PROMOTERS; DYNAMICS; VERTEBRATE; SIGNATURES;
D O I
10.1038/s41559-017-0377-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
To gain insight into how mammalian gene expression is controlled by rapidly evolving regulatory elements, we jointly analysed promoter and enhancer activity with downstream transcription levels in liver samples from 15 species. Genes associated with complex regulatory landscapes generally exhibit high expression levels that remain evolutionarily stable. While the number of regulatory elements is the key driver of transcriptional output and resilience, regulatory conservation matters: elements active across mammals most effectively stabilize gene expression. In contrast, recently evolved enhancers typically contribute weakly, consistent with their high evolutionary plasticity. These effects are observed across the entire mammalian clade and are robust to potential confounders, such as the gene expression level. Using liver as a representative somatic tissue, our results illuminate how the evolutionary stability of gene expression is profoundly entwined with both the number and conservation of surrounding promoters and enhancers.
引用
收藏
页码:152 / 163
页数:12
相关论文
共 81 条
[1]  
Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
[2]  
[Anonymous], PREPRINT
[3]   Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution [J].
Arnold, Cosmas D. ;
Gerlach, Daniel ;
Spies, Daniel ;
Matts, Jessica A. ;
Sytnikova, Yuliya A. ;
Pagani, Michaela ;
Lau, Nelson C. ;
Stark, Alexander .
NATURE GENETICS, 2014, 46 (07) :685-692
[4]   Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq [J].
Arnold, Cosmas D. ;
Gerlach, Daniel ;
Stelzer, Christoph ;
Boryn, Lukasz M. ;
Rath, Martina ;
Stark, Alexander .
SCIENCE, 2013, 339 (6123) :1074-1077
[5]   Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? [J].
Arnosti, DN ;
Kulkarni, MM .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2005, 94 (05) :890-898
[6]   Animal Transcription Networks as Highly Connected, Quantitative Continua [J].
Biggin, Mark D. .
DEVELOPMENTAL CELL, 2011, 21 (04) :611-626
[7]   The evolution of gene expression levels in mammalian organs [J].
Brawand, David ;
Soumillon, Magali ;
Necsulea, Anamaria ;
Julien, Philippe ;
Csardi, Gabor ;
Harrigan, Patrick ;
Weier, Manuela ;
Liechti, Angelica ;
Aximu-Petri, Ayinuer ;
Kircher, Martin ;
Albert, Frank W. ;
Zeller, Ulrich ;
Khaitovich, Philipp ;
Gruetzner, Frank ;
Bergmann, Sven ;
Nielsen, Rasmus ;
Paeaebo, Svante ;
Kaessmann, Henrik .
NATURE, 2011, 478 (7369) :343-+
[8]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[9]   Gene Expression Differences Among Primates Are Associated With Changes in a Histone Epigenetic Modification [J].
Cain, Carolyn E. ;
Blekhman, Ran ;
Marioni, John C. ;
Gilad, Yoav .
GENETICS, 2011, 187 (04) :1225-U418
[10]  
Chan Esther T., 2009, Journal of Biology (London), V8, P33, DOI 10.1186/jbiol130