On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process

被引:49
|
作者
Rey, A. [1 ]
Hungria, A. B. [2 ]
Duran-Valle, C. J. [3 ,4 ]
Faraldos, M. [1 ]
Bahamonde, A. [1 ]
Casas, J. A. [5 ]
Rodriguez, J. J. [5 ]
机构
[1] CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain
[2] Univ Cadiz, Dept Ciencia Mat & Ingn Met & Quim Inorgan, Cadiz 11510, Spain
[3] Univ Extremadura, Dept Quim Organ & Inorgan, Badajoz 06006, Spain
[4] Univ Extremadura, ACYS, Badajoz 06006, Spain
[5] Univ Autonoma Madrid, Fac Ciencias, Secc Ingn Quim, E-28049 Madrid, Spain
关键词
Iron particles; Activated carbon; CWPO; Hydrogen peroxide; Hydroxyl radicals; HYDROGEN-PEROXIDE; AIR OXIDATION; ORGANIC CONTAMINANTS; FUNCTIONAL-GROUPS; WATER; ADSORPTION; SURFACE; PHENOL; CHLOROPHENOLS; DECOMPOSITION;
D O I
10.1016/j.apcatb.2015.07.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different homemade iron-activated carbon catalysts (Fe/AC) have been studied in the CWPO of phenol at mild conditions (atmospheric pressure and 50 degrees C). Both iron content and the way to introduce iron active phase in Fe/AC catalysts were analyzed to select the most stable and efficient activated carbon-supported iron catalyst. The major differences were found on their surface properties, mainly those related to iron distribution and iron particle size. Catalysts prepared by two-consecutive steps of impregnation, regardless of iron content, always presented lower leaching phenomena of iron to the reaction medium than those prepared by one-step wetness impregnation. This higher stability could be indicating an improved metal-support interaction as a consequence of the two-step methodology used to incorporate the iron, which leads to the formation of small iron particles very homogeneous in size (approximate to 3 nm). The best performance balanced between activity and stability was obtained with 2% iron 2-steps catalyst (2sFe/CN) which gave rise to complete removal of phenol after 60 min, maximal reduction of TOC content and optimal use of the stoichiometric amount of H2O2 added during batch experiments at 50 degrees C, atmospheric pressure, 500 mg L-1 catalyst loading, 100 mg L-1 and 500 mg L-1 of phenol and hydrogen peroxide concentrations, respectively, at pH(0) = 3. The study of H2O2 decomposition in the presence of an excess of MeOH, a well-known (OH)-O-center dot scavenger, has been an useful tool to analyze the behavior of heterogeneous catalysts in CWPO reactions. 2sFe/CN catalyst led to a better and efficient use of H2O2 with higher hydroxyl radical yield in the presence of phenol instead of methanol, as a consequence of phenol adsorption onto the catalyst surface which minimizes the inefficient decomposition of H2O2 at the same operating conditions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Stability of carbon-supported iron catalysts for catalytic wet peroxide oxidation of ionic liquids
    Mena, Ismael F.
    Diaz, Elena
    Moreno-Andrade, Ivan
    Rodriguez, Juan J.
    Mohedano, Angel F.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (05): : 6444 - 6450
  • [2] Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface
    Rey, A.
    Faraldos, M.
    Casas, J. A.
    Zazo, J. A.
    Bahamonde, A.
    Rodriguez, J. J.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 86 (1-2) : 69 - 77
  • [3] Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts
    Liou, Rey-May
    Chen, Shih-Hsiung
    Huang, Cheng-Hsien
    Hung, Mu-Ya
    Chang, Jing-Song
    Lai, Cheng-Lee
    WATER SCIENCE AND TECHNOLOGY, 2010, 61 (06) : 1489 - 1498
  • [4] Catalytic wet peroxide oxidation of phenol using nanoscale zero-valent iron supported on activated carbon
    Messele, S. A.
    Bengoa, C.
    Stueber, F.
    Fortuny, A.
    Fabregat, A.
    Font, J.
    DESALINATION AND WATER TREATMENT, 2016, 57 (11) : 5155 - 5164
  • [5] Effect of structural defects on activated carbon catalysts in catalytic wet peroxide oxidation of m-cresol
    Wang, Yamin
    Wei, Huangzhao
    Liu, Peijuan
    Yu, Yang
    Zhao, Ying
    Li, Xuning
    Jiang, Wentian
    Wang, Junhu
    Yang, Xu
    Sun, Chenglin
    CATALYSIS TODAY, 2015, 258 : 120 - 131
  • [6] Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol
    Messele, S. A.
    Soares, O. S. G. P.
    Orfao, J. J. M.
    Stueber, F.
    Bengoa, C.
    Fortuny, A.
    Fabregat, A.
    Font, J.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 154 : 329 - 338
  • [7] The role of activated carbons functionalized with thiol and sulfonic acid groups in catalytic wet peroxide oxidation
    Gomes, Helder T.
    Miranda, Sandra M.
    Sampaio, Maria J.
    Figueiredo, Jose L.
    Silva, Adrian M. T.
    Faria, Joaquim L.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 106 (3-4) : 390 - 397
  • [8] Role of Nitrogen Doping on the Performance of Carbon Nanotube Catalysts: A Catalytic Wet Peroxide Oxidation Application
    Martin-Martinez, Maria
    Ribeiro, Rui S.
    Machado, Bruno F.
    Serp, Philippe
    Morales-Torres, Sergio
    Silva, Adrian M. T.
    Figueiredo, Jose L.
    Faria, Joaquim L.
    Gomes, Helder T.
    CHEMCATCHEM, 2016, 8 (12) : 2068 - 2078
  • [9] Supported gold nanoparticle catalysts for wet peroxide oxidation
    Quintanilla, A.
    Garcia-Rodriguez, S.
    Dominguez, C. M.
    Blasco, S.
    Casas, J. A.
    Rodriguez, J. J.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 111 : 81 - 89
  • [10] Hypergolicity improvement by activated carbon-supported catalysts for hydrogen peroxide oxidizer
    Jeong, Junyeong
    Rang, Seongmin
    Ugolini, Vincent Mario Pierre
    Kwon, Sejin
    ACTA ASTRONAUTICA, 2022, 198 : 720 - 727