Ambient Pressure X-ray Photoelectron Spectroscopy Investigation of Thermally Stable Halide Perovskite Solar Cells via Post-Treatment

被引:52
作者
Ning, Shougui [1 ,2 ]
Zhang, Songwei [2 ]
Sun, Jiaonan [2 ]
Li, Congping [3 ]
Zheng, Jingfeng [2 ]
Khalifa, Yehia M. [2 ]
Zhou, Shouhuan [1 ]
Cao, Jing [3 ]
Wu, Yiying [2 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, 24 South Sect 1, Chengdu 610064, Sichuan, Peoples R China
[2] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[3] Lanzhou Univ, Coll Chem & Chem Engn, State Key Lab Appl Organ Chem, Key Lab Nonferrous Met Chem & Resources Utilizat, Lanzhou 730000, Peoples R China
基金
美国国家科学基金会;
关键词
halide perovskite; post-treatment; ambient pressure XPS; thermal stability; solar cells; PASSIVATION; DEGRADATION; STABILITY; PERFORMANCE; EFFICIENCY; SURFACES;
D O I
10.1021/acsami.0c12044
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Long-term thermal stability is one limiting factor that impedes the commercialization of the perovskite solar cell. Inspired by our prior results from machine learning, we discover that coating a thin layer of 4,4'-dibromotriphenyl-amine (DBTPA) on top of a CH3NH3PbI3 layer can improve the stability of resultant solar cells. The passivated devices kept 96% of the original power conversion efficiency for 1000 h at 85 degrees C in a N-2 atmosphere without encapsulation. Near-ambient pressure X-ray photoelectron spectroscopy (XPS) was employed to investigate the evolution of the composition and evaluate thermal and moisture stability by in situ studies. A comparison between pristine MAPbI(3) films and DBTPA-treated films shows that the DBTPA treatment suppresses the escape of iodide and methylamine up to 150 degrees C under 5 mbar humidity. Furthermore, we have used attenuated total reflection Fourier transform infrared and XPS to probe the interactions between DBTPA and MAPbI(3) surfaces. The results prove that DBTPA coordinates with the perovskite by Lewis acid-base and cation-pi interaction. Compared with the 19.9% efficiency of the pristine sample, the champion efficiency of the passivated sample reaches 20.6%. Our results reveal DBTPA as a new post-treating molecule that leads not only to the improvement of the photovoltaic efficiency but also thermal and moisture stability.
引用
收藏
页码:43705 / 43713
页数:9
相关论文
共 36 条
[1]   Planar perovskite solar cells with long-term stability using ionic liquid additives [J].
Bai, Sai ;
Da, Peimei ;
Li, Cheng ;
Wang, Zhiping ;
Yuan, Zhongcheng ;
Fu, Fan ;
Kawecki, Maciej ;
Liu, Xianjie ;
Sakai, Nobuya ;
Wang, Jacob Tse-Wei ;
Huettner, Sven ;
Buecheler, Stephan ;
Fahlman, Mats ;
Gao, Feng ;
Snaith, Henry J. .
NATURE, 2019, 571 (7764) :245-+
[2]   On-surface photo-dissociation of C-Br bonds: towards room temperature Ullmann coupling [J].
Basagni, Andrea ;
Ferrighi, Lara ;
Cattelan, Mattia ;
Nicolas, Louis ;
Handrup, Karsten ;
Vaghi, Luca ;
Papagni, Antonio ;
Sedona, Francesco ;
Di Valentin, Cristiana ;
Agnoli, Stefano ;
Sambi, Mauro .
CHEMICAL COMMUNICATIONS, 2015, 51 (63) :12593-12596
[3]   Interfacial Modification in Organic and Perovskite Solar Cells [J].
Bi, Shiqing ;
Leng, Xuanye ;
Li, Yanxun ;
Zheng, Zhong ;
Zhang, Xuning ;
Zhang, Yuan ;
Zhou, Huiqiong .
ADVANCED MATERIALS, 2019, 31 (45)
[4]   Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics [J].
Boyd, Caleb C. ;
Cheacharoen, Rongrong ;
Leijtens, Tomas ;
McGehee, Michael D. .
CHEMICAL REVIEWS, 2019, 119 (05) :3418-3451
[5]   Bromination of Double-Walled Carbon Nanotubes [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Flahaut, E. ;
Asanov, I. P. ;
Gevko, P. N. ;
Koroteev, V. O. ;
Fedoseeva, Yu. V. ;
Yaya, A. ;
Ewels, C. P. .
CHEMISTRY OF MATERIALS, 2012, 24 (14) :2708-2715
[6]   Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse [J].
Cao, Jing ;
Lv, Xudong ;
Feng, Xiaoxia ;
Meng, Ruiqian ;
Wu, Yiying ;
Tang, Yu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (37) :11577-11580
[7]   Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite [J].
Conings, Bert ;
Drijkoningen, Jeroen ;
Gauquelin, Nicolas ;
Babayigit, Aslihan ;
D'Haen, Jan ;
D'Olieslaeger, Lien ;
Ethirajan, Anitha ;
Verbeeck, Jo ;
Manca, Jean ;
Mosconi, Edoardo ;
De Angelis, Filippo ;
Boyen, Hans-Gerd .
ADVANCED ENERGY MATERIALS, 2015, 5 (15)
[8]   Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates [J].
Fan, Zheng ;
Xiao, Hai ;
Wang, Yiliu ;
Zhao, Zipeng ;
Lin, Zhaoyang ;
Cheng, Hung-Chieh ;
Lee, Sung-Joon ;
Wang, Gongming ;
Feng, Ziying ;
Goddard, William A., III ;
Huang, Yu ;
Duan, Xiangfeng .
JOULE, 2017, 1 (03) :548-562
[9]   Organohalide lead perovskites for photovoltaic applications [J].
Gao, Peng ;
Graetzel, Michael ;
Nazeeruddin, Mohammad K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2448-2463
[10]   Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices [J].
Han, Tae-Hee ;
Tan, Shaun ;
Xue, Jingling ;
Meng, Lei ;
Lee, Jin-Wook ;
Yang, Yang .
ADVANCED MATERIALS, 2019, 31 (47)