Existence of Solutions to Quasilinear Schrodinger Equations Involving Critical Sobolev Exponent

被引:20
作者
Wang, Youjun [1 ]
Li, Zhouxin [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Cent S Univ, Dept Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 02期
关键词
quasilinear Schrodinger equations; mountain pass theorem; soliton solutions; SOLITON-SOLUTIONS; R-N; CRITICAL GROWTH; POSITIVE SOLUTIONS;
D O I
10.11650/tjm/8150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using variational approaches, we study a class of quasilinear Schrodinger equations involving critical Sobolev exponents -Delta u + V(x)u + 1/2 kappa[Delta(u(2))]u = vertical bar u vertical bar(p-2) u + vertical bar u vertical bar(2*-2)u, x is an element of R-N, where V(x) is the potential function, kappa > 0, max{(N + 3)/(N - 2), 2} < p < 2* := 2N/(N - 2), N >= 4. If kappa is an element of [0, (kappa) over bar) for some (kappa) over bar > 0, we prove the existence of a positive solution u(x) satisfying max(x is an element of RN) vertical bar u(x)vertical bar <= root/1/(2 kappa).
引用
收藏
页码:401 / 420
页数:20
相关论文
共 27 条
[11]   CONCENTRATING SOLITON SOLUTIONS FOR QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
He, Yi ;
Li, Gongbao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) :731-762
[12]   A remark on least energy solutions in RN [J].
Jeanjean, L ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2399-2408
[13]   Solutions for a class of quasilinear Schrodinger equations with critical Sobolev exponents [J].
Li, Zhouxin ;
Zhang, Yimin .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
[14]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[15]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493
[16]   Ground states for quasilinear Schrodinger equations with critical growth [J].
Liu, Xiangqing ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :641-669
[17]   On a class of semilinear elliptic problems in R-n with critical growth [J].
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (07) :773-781
[18]   Existence of soliton solutions for a quasilinear Schrodinger equation involving critical exponent in RN [J].
Moameni, Abbas .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) :570-587
[19]   DAMPING AND MODIFICATION OF EXCITATION SOLITARY WAVES [J].
NAKAMURA, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 42 (06) :1824-1835
[20]   On the existence of soliton solutions to quasilinear Schrodinger equations [J].
Poppenberg, M ;
Schmitt, K ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :329-344