Existence of Solutions to Quasilinear Schrodinger Equations Involving Critical Sobolev Exponent

被引:20
作者
Wang, Youjun [1 ]
Li, Zhouxin [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Cent S Univ, Dept Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 02期
关键词
quasilinear Schrodinger equations; mountain pass theorem; soliton solutions; SOLITON-SOLUTIONS; R-N; CRITICAL GROWTH; POSITIVE SOLUTIONS;
D O I
10.11650/tjm/8150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using variational approaches, we study a class of quasilinear Schrodinger equations involving critical Sobolev exponents -Delta u + V(x)u + 1/2 kappa[Delta(u(2))]u = vertical bar u vertical bar(p-2) u + vertical bar u vertical bar(2*-2)u, x is an element of R-N, where V(x) is the potential function, kappa > 0, max{(N + 3)/(N - 2), 2} < p < 2* := 2N/(N - 2), N >= 4. If kappa is an element of [0, (kappa) over bar) for some (kappa) over bar > 0, we prove the existence of a positive solution u(x) satisfying max(x is an element of RN) vertical bar u(x)vertical bar <= root/1/(2 kappa).
引用
收藏
页码:401 / 420
页数:20
相关论文
共 27 条
[1]  
Alves C. O., 1996, ELECT J DIFFERENTIAL, V1996
[2]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[3]   MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF PROBLEMS WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. ;
Souto, Marco A. S. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 :1-21
[4]  
[Anonymous], 2015, Chinese University Technology Transfer, DOI DOI 10.1016/J.EXPNEUR0L.2015.04.009
[5]  
[Anonymous], 1983, Elliptic Partial Equations of Second Order
[6]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]  
Brull L., 1986, MATH METHOD APPL SCI, V8, P559
[9]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[10]  
DAVYDOVA TA, 1995, UKR PHYS J, V40, P487