Maximum Likelihood Optimal Estimator of Continuous Nonlinear Dynamic Systems

被引:0
作者
Rusnak, Ilan [1 ,2 ]
机构
[1] RAFAEL, IL-3102102 Haifa, Israel
[2] Technion Israel Inst Technol, Fac Elect Engn, IL-32000 Haifa, Israel
来源
2014 IEEE 28TH CONVENTION OF ELECTRICAL & ELECTRONICS ENGINEERS IN ISRAEL (IEEEI) | 2014年
关键词
optimal estimator; nonlinear system; maximum likelihood; nonlinear estimator;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Joint Maximum Likelihood criterion is used to derive the optimal estimator for continuous nonlinear systems with nonlinear dynamics and measurement. The solution is explicit and gives recursive formulas of the optimal estimator. The computation of the estimator's gains needs the solution of non-symmetric Differential Matrix Riccati Equation (DMRE). For linear systems this solution constitutes the structure of the Kalman Filter.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Maximum likelihood in statistical estimation of dynamic systems: Decomposition algorithm and simulation results [J].
Deng, L ;
Shen, XM .
SIGNAL PROCESSING, 1997, 57 (01) :65-79
[32]   A maximum-likelihood relatedness estimator allowing for negative relatedness values [J].
Konovalov, Dmitry A. ;
Heg, Dik .
MOLECULAR ECOLOGY RESOURCES, 2008, 8 (02) :256-263
[33]   Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression [J].
Gao, Sujuan ;
Shen, Jianzhao .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (09) :925-930
[34]   PERFORMANCE OF FLEXIBLE DECISION-AIDED MAXIMUM LIKELIHOOD PHASE ESTIMATOR [J].
Wang, Ping ;
Chen, Jian ;
You, Xiaodi ;
Yu, Changyuan .
2015 14TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2015,
[35]   Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime [J].
Douc, R ;
Moulines, T ;
Rydén, T .
ANNALS OF STATISTICS, 2004, 32 (05) :2254-2304
[36]   Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems [J].
Li, Junhong ;
Ding, Feng ;
Yang, Guowei .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :442-450
[37]   Auxiliary model-based interval-varying maximum likelihood estimation for nonlinear systems with missing data [J].
Xia, Huafeng ;
Wu, Zhengle ;
Xu, Sheng ;
Liu, Lijuan ;
Li, Yang ;
Zhou, Yin .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (02) :1312-1323
[38]   Joint Maximum-Likelihood and MMSE Channel Estimator for UWB Communications [J].
周磊 ;
周世东 ;
姚彦 .
Tsinghua Science and Technology, 2006, (05) :568-573
[39]   Estimation of Phase, Range, Doppler of Targets Using Maximum Likelihood Estimator [J].
Baig, Nauman Anwar ;
Baig, Muhammad Anwar ;
Baig, Thawban Anwar ;
Baig, Adnan Anwar ;
Baig, Abdullah Anwar .
PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 2, 2019, 881 :483-490
[40]   A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models [J].
Laurini, Marcio Poletti .
JOURNAL OF TIME SERIES ECONOMETRICS, 2013, 5 (02) :193-229