Compressive deformation of Rohacell foams: Effects of strain rate and temperature

被引:43
作者
Arezoo, S. [2 ]
Tagarielli, V. L. [1 ]
Siviour, C. R. [2 ]
Petrinic, N. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[2] Univ Oxford, Dept Engn, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Rohacell; Polymer foam; Strain rate; Temperature; RATE RESPONSE; BEHAVIOR; FATIGUE; POLYCARBONATE;
D O I
10.1016/j.ijimpeng.2012.07.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Uniaxial compression experiments have been performed on four different densities of Rohacell foam. The experiments explored the sensitivity of the response to the imposed strain rate (in the range 10(-3) to 5 x 10(3) s(-1)) and temperature (203-473 K). The compressive collapse stress is generally found to increase with increasing strain rate and decreasing temperature; however this tendency is inverted at very low temperatures or very high strain rates. This behaviour is mainly due to embrittlement of the parent polymer but is also related to the details of the foams' microstructures. Time-temperature superposition is employed to map the temperature sensitivity of the foams to their strain rate dependence. A simple design formula is provided to predict the foam stiffness as a function of temperature and relative density. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 28 条
  • [1] The mechanical response of Rohacell foams at different length scales
    Arezoo, S.
    Tagarielli, V. L.
    Petrinic, N.
    Reed, J. M.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2011, 46 (21) : 6863 - 6870
  • [2] EFFECTS OF STRAIN-RATE, TEMPERATURE AND THERMOMECHANICAL COUPLING ON THE FINITE STRAIN DEFORMATION OF GLASSY-POLYMERS
    ARRUDA, EM
    BOYCE, MC
    JAYACHANDRAN, R
    [J]. MECHANICS OF MATERIALS, 1995, 19 (2-3) : 193 - 212
  • [3] A split Hopkinson bar technique for low-impedance materials
    Chen, W
    Zhang, B
    Forrestal, MJ
    [J]. EXPERIMENTAL MECHANICS, 1999, 39 (02) : 81 - 85
  • [4] Gibson L.J., 1999, CELLULAR SOLIDS STRU, V2, P532, DOI [10.1017/CBO9781139878326, DOI 10.1017/CBO9781139878326]
  • [5] Gray G., 1999, Classic split Hopkinson pressure bar technique ASM V8 mechanical testing, P17
  • [6] DUCTILE BRITTLE TRANSITION IN POLYMERS
    JANG, BZ
    UHLMANN, DR
    VANDERSANDE, JB
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1984, 29 (11) : 3409 - 3420
  • [7] Strain rate dependent compressive properties of glass microballoon epoxy syntactic foams
    Li, P.
    Petrinic, N.
    Siviour, C. R.
    Froud, R.
    Reed, J. M.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 515 (1-2): : 19 - 25
  • [8] The crush behaviour of Rohacell-51WF structural foam
    Li, QM
    Mines, RAW
    Birch, RS
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (43) : 6321 - 6341
  • [9] Strain rate effects in crushable structural foams
    Mines, R. A. W.
    [J]. ADVANCES IN EXPERIMENTAL MECHANICS V, 2007, 7-8 : 231 - 236
  • [10] Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates
    Mulliken, AD
    Boyce, MC
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (05) : 1331 - 1356