Sparse time series chain graphical models for reconstructing genetic networks

被引:66
作者
Abegaz, Fentaw [1 ]
Wit, Ernst [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, Netherlands
关键词
Chain graphical mode; Dynamic network; Gene expression; High-dimensional data; L-1; penalty; Model selection; Penalized likelihood; SCAD penalty; Vector autoregressive model; NONCONCAVE PENALIZED LIKELIHOOD; ARABIDOPSIS-THALIANA; VARIABLE SELECTION; MAMMARY-GLAND;
D O I
10.1093/biostatistics/kxt005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of contemporaneous and dynamic interactions by efficiently combining Gaussian graphical models and Bayesian dynamic networks. We use penalized likelihood inference with a smoothly clipped absolute deviation penalty to explore the relationships among the observed time course gene expressions. The method is illustrated on simulated data and on real data examples from Arabidopsis thaliana and mammary gland time course microarray gene expressions.
引用
收藏
页码:586 / 599
页数:14
相关论文
共 27 条
  • [1] Aburatani S., 2006, STAT METHODOL, V3, P17
  • [2] [Anonymous], 2003, HIGHLY STRUCTURED ST
  • [3] Gene expression profiling of early involuting mammary gland reveals novel genes potentially relevant to human breast cancer
    Blanchard, Anne
    Shiu, Robert
    Booth, Stephanie
    Sorensen, Garrett
    DeCorby, Nicole
    Nistor, Andreea
    Wong, Paul
    Leygue, Etienne
    Myal, Yvonne
    [J]. FRONTIERS IN BIOSCIENCE, 2007, 12 : 2221 - 2232
  • [4] A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
    Cai, Tony
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 594 - 607
  • [5] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [6] NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES
    Fan, Jianqing
    Feng, Yang
    Wu, Yichao
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (02) : 521 - 541
  • [7] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [8] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [9] Latent ancestral graph of structure vector autoregressive models
    Gao, Wei
    Tian, Zheng
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (02) : 233 - 238
  • [10] Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    Grzegorczyk, Marco
    Husmeier, Dirk
    Edwards, Kieron D.
    Ghazal, Peter
    Millar, Andrew J.
    [J]. BIOINFORMATICS, 2008, 24 (18) : 2071 - 2078