Sparse time series chain graphical models for reconstructing genetic networks
被引:66
作者:
Abegaz, Fentaw
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, Netherlands
Abegaz, Fentaw
[1
]
Wit, Ernst
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, NetherlandsUniv Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, Netherlands
Wit, Ernst
[1
]
机构:
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AB Groningen, Netherlands
We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of contemporaneous and dynamic interactions by efficiently combining Gaussian graphical models and Bayesian dynamic networks. We use penalized likelihood inference with a smoothly clipped absolute deviation penalty to explore the relationships among the observed time course gene expressions. The method is illustrated on simulated data and on real data examples from Arabidopsis thaliana and mammary gland time course microarray gene expressions.
机构:
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
机构:
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Stanford Univ, Dept Stat, Stanford, CA 94305 USAStanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA