Spheres, Kahler geometry and the Hunter-Saxton system

被引:7
作者
Lenells, Jonatan [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 469卷 / 2154期
基金
英国工程与自然科学研究理事会;
关键词
diffeomorphism groups; Kahler geometry; curvature; nonlinear partial differential equations; SHALLOW-WATER EQUATION; 2-COMPONENT CAMASSA-HOLM; BREAKING WAVES; GEODESIC-FLOW;
D O I
10.1098/rspa.2012.0726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many important equations of mathematical physics arise geometrically as geodesic equations on Lie groups. In this paper, we study an example of a geodesic equation, the two-component Hunter-Saxton (2HS) system, which displays a number of unique geometric features. We show that 2HS describes the geodesic flow on a manifold, which is isometric to a subset of a sphere. Since the geodesics on a sphere are simply the great circles, this immediately yields explicit formulae for the solutions of 2HS. We also show that when restricted to functions of zero mean, 2HS reduces to the geodesic equation on an infinite-dimensional manifold, which admits a Kahler structure. We demonstrate that this manifold is in fact isometric to a subset of complex projective space, and that the above constructions provide an example of an infinite-dimensional Hopf fibration.
引用
收藏
页数:19
相关论文
共 20 条
[1]  
Arnold VI, 1966, ANN I FOURIER GRENOB, V16, P319, DOI [10.5802/aif.233, DOI 10.5802/AIF.233]
[2]   On geodesic exponential maps of the Virasoro group [J].
Constantin, A. ;
Kappeler, T. ;
Kolev, B. ;
Topalov, P. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) :155-180
[3]   On the blow-up rate and the blow-up set of breaking waves for a shallow water equation [J].
Constantin, A ;
Escher, J .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) :75-91
[4]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[5]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132
[6]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[7]   The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations [J].
Escher, J. ;
Kohlmann, M. ;
Lenells, J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :436-452
[8]   DYNAMICS OF DIRECTOR FIELDS [J].
HUNTER, JK ;
SAXTON, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (06) :1498-1521
[9]   Euler equations on homogeneous spaces and Virasoro orbits [J].
Khesin, B ;
Misiolek, G .
ADVANCES IN MATHEMATICS, 2003, 176 (01) :116-144
[10]   Geometry of Diffeomorphism Groups, Complete integrability and Geometric statistics [J].
Khesin, B. ;
Lenells, J. ;
Misiolek, G. ;
Preston, S. C. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (01) :334-366