Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

被引:17
作者
Yu, Kai [1 ]
Shi, Fei [1 ]
Gao, Enting [1 ]
Zhu, Weifang [1 ]
Chen, Haoyu [2 ,3 ]
Chen, Xinjian [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[2] Shantou Univ, Joint Shantou Int Eye Ctr, Shantou 515041, Peoples R China
[3] Chinese Univ Hong Kong, Shantou 515041, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2018年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
RETINAL LAYER SEGMENTATION; AUTOMATIC SEGMENTATION; OCT IMAGES; GLAUCOMA; DISC; FEATURES; PEOPLE; NUMBER;
D O I
10.1364/BOE.9.000962
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a "hole" structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 +/- 5.40 mu m was achieved for layer segmentation, and a mean Dice coefficient of 0.925 +/- 0.03 was achieved for optic disc region detection. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:962 / 983
页数:22
相关论文
共 53 条
  • [21] Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search
    Garvin, Mona K.
    Abramoff, Michael D.
    Kardon, Randy
    Russell, Stephen R.
    Wu, Xiaodong
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) : 1495 - 1505
  • [22] Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images
    Garvin, Mona Kathryn
    Abramoff, Michael David
    Wu, Xiaodong
    Russell, Stephen R.
    Burns, Trudy L.
    Sonka, Milan
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1436 - 1447
  • [23] OPTICAL COHERENCE TOMOGRAPHY OF THE HUMAN RETINA
    HEE, MR
    IZATT, JA
    SWANSON, EA
    HUANG, D
    SCHUMAN, JS
    LIN, CP
    PULIAFITO, CA
    FUJIMOTO, JG
    [J]. ARCHIVES OF OPHTHALMOLOGY, 1995, 113 (03) : 325 - 332
  • [24] Hu Z., 2009, P SOC PHOTO-OPT INS, V7262
  • [25] THREE DIMENSIONAL CHOROIDAL SEGMENTATION IN SPECTRAL OCT VOLUMES USING OPTIC DISC PRIOR INFORMATION
    Hu, Zhihong
    Girkin, Christopher A.
    Hariri, Amirhossein
    Sadda, SriniVas R.
    [J]. OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XX, 2016, 9697
  • [26] Development of a simple diagnostic method for the glaucoma using ocular Fundus pictures
    Inoue, Naoto
    Yanashima, Kenji
    Magatani, Kazushige
    Kurihara, Takuro
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3355 - 3358
  • [27] Optical coherence tomography to detect and manage retinal disease and glaucoma
    Jaffe, GJ
    Caprioli, J
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2004, 137 (01) : 156 - 169
  • [28] Enhanced low-rank plus sparsity decomposition for speckle reduction in optical coherence tomography
    Kopriva, Ivica
    Shi, Fei
    Chen, Xinjian
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (07)
  • [29] Retinal layer segmentation of macular OCT images using boundary classification
    Lang, Andrew
    Carass, Aaron
    Hauser, Matthew
    Sotirchos, Elias S.
    Calabresi, Peter A.
    Ying, Howard S.
    Prince, Jerry L.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2013, 4 (07): : 1133 - 1152
  • [30] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444