Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

被引:17
作者
Yu, Kai [1 ]
Shi, Fei [1 ]
Gao, Enting [1 ]
Zhu, Weifang [1 ]
Chen, Haoyu [2 ,3 ]
Chen, Xinjian [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[2] Shantou Univ, Joint Shantou Int Eye Ctr, Shantou 515041, Peoples R China
[3] Chinese Univ Hong Kong, Shantou 515041, Peoples R China
来源
BIOMEDICAL OPTICS EXPRESS | 2018年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
RETINAL LAYER SEGMENTATION; AUTOMATIC SEGMENTATION; OCT IMAGES; GLAUCOMA; DISC; FEATURES; PEOPLE; NUMBER;
D O I
10.1364/BOE.9.000962
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a "hole" structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 +/- 5.40 mu m was achieved for layer segmentation, and a mean Dice coefficient of 0.925 +/- 0.03 was achieved for optic disc region detection. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:962 / 983
页数:22
相关论文
共 53 条
  • [1] Ahmad H, 2014, 2014 INTERNATIONAL CONFERENCE ON ROBOTICS AND EMERGING ALLIED TECHNOLOGIES IN ENGINEERING (ICREATE), P321, DOI 10.1109/iCREATE.2014.6828388
  • [2] [Anonymous], 2009, THESIS
  • [3] Antony BJ, 2014, LECT NOTES COMPUT SC, V8673, P739, DOI 10.1007/978-3-319-10404-1_92
  • [4] Automated 3-D Segmentation of Intraretinal Layers from Optic Nerve Head Optical Coherence Tomography Images
    Antony, Bhavna J.
    Abramoff, Michael D.
    Lee, Kyungmoo
    Sonkova, Pavlina
    Gupta, Priya
    Kwon, Young
    Niemeijer, Meindert
    Hu, Zhihong
    Garvin, Mona K.
    [J]. MEDICAL IMAGING 2010: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2010, 7626
  • [5] Apostolopoulos Stefanos, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P294, DOI 10.1007/978-3-319-66179-7_34
  • [6] Bock R, 2007, LECT NOTES COMPUT SC, V4713, P355
  • [7] Glaucoma risk index: Automated glaucoma detection from color fundus images
    Bock, Ruediger
    Meier, Joerg
    Nyul, Laszlo G.
    Hornegger, Joachim
    Michelson, Georg
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 471 - 481
  • [8] An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    Boykov, Y
    Kolmogorov, V
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) : 1124 - 1137
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] BRIEF: Binary Robust Independent Elementary Features
    Calonder, Michael
    Lepetit, Vincent
    Strecha, Christoph
    Fua, Pascal
    [J]. COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 : 778 - 792