The central limit theorem for a sequence of random processes with space-varying long memory

被引:4
作者
Characiejus, Vaidotas [1 ]
Rackauskas, Alfredas [1 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
long memory; random processes; square-integrable sample paths; central limit theorem; weak convergence;
D O I
10.1007/s10986-013-9200-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a sequence of square-integrable random processes with space-varying memory. We establish sufficient conditions for the central limit theorem in the space L (2)(mu) for the partial sums of the sequence of random processes with space-varying long memory. Of particular interest is a nonstandard normalization of the partial sums in the central limit theorem.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 11 条
[1]  
Beran J., 1994, CHAPMAN HALL CRC MON, V61
[2]  
Bosq D., 2000, LECT NOTES STAT, V149
[3]   ON WEAK-CONVERGENCE OF INTEGRAL FUNCTIONALS OF STOCHASTIC-PROCESSES WITH APPLICATIONS TO PROCESSES TAKING PATHS IN LPE [J].
CREMERS, H ;
KADELKA, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 21 (02) :305-317
[4]  
Giraitis L., 2012, Large Sample Inference for Long Memory Processes
[5]  
Granger C. W. J., 1980, Journal of Time Series Analysis, V1, P15, DOI 10.1111/j.1467-9892.1980.tb00297.x
[6]  
Hamilton J. D., 2020, TIME SERIES ANAL
[7]  
HOSKING JRM, 1981, BIOMETRIKA, V68, P165, DOI 10.1093/biomet/68.1.165
[8]  
Rackauskas A, 2010, LITH MATH J, V50, P71
[9]   OPERATOR FRACTIONAL BROWNIAN MOTION AS LIMIT OF POLYGONAL LINES PROCESSES IN HILBERT SPACE [J].
Rackauskas, Alfredas ;
Suquet, Charles .
STOCHASTICS AND DYNAMICS, 2011, 11 (01) :49-70
[10]  
Ramsay J., 2005, FUNCTIONAL DATA ANAL, VSecond