Acceleration schemes for computing centroidal Voronoi tessellations

被引:49
作者
Du, Q
Emelianenko, M [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
centroidal Voronoi tessellations; cornputational algorithms; Lloyd's method; Newton's method; multilevel method; uniform convergence;
D O I
10.1002/nla.476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Centroidal Voronoi tessellations (CVT) have diverse applications ill many areas of science and engineering,. The development of efficient algorithms for their construction is a key to their success in practice. In this paper, we study sorne new algorithms for the numerical computation of the CVT, including the Lloyd-Newton iteration and the optimization based multilevel method. Both theoretical analysis and computational simulations are conducted. Rigorous convergence results are presented and significant speedup in computation is demonstrated through the comparison with traditional methods. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 34 条
  • [1] [Anonymous], 1991, ACM Computing Surveys
  • [2] Brandt A., 2000, Electronic Transactions on Numerical Analysis, V10
  • [3] Algebraic multigrid based on element interpolation (AMGE)
    Brezina, M
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05) : 1570 - 1592
  • [4] CAPPELLARI M, 2003, MON NOT R ASTRON SOC, V2, P345
  • [5] Efficient algebraic multigrid algorithms and their convergence
    Chang, QS
    Huang, ZH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) : 597 - 618
  • [6] Coverage control for mobile sensing networks
    Cortés, J
    Martínez, S
    Karatas, T
    Bullo, F
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2004, 20 (02): : 243 - 255
  • [7] DENNIS JE, 1983, NUMERICAL METHODS UN, P86
  • [8] Constrained centroidal Voronoi tessellations for surfaces
    Du, Q
    Gunzburger, MD
    Ju, LL
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05) : 1488 - 1506
  • [9] Meshfree, probabilistic determination of point sets and support regions for meshless computing
    Du, Q
    Gunzburger, M
    Ju, LL
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (13-14) : 1349 - 1366
  • [10] Grid generation and optimization based on centroidal Voronoi tessellations
    Du, Q
    Gunzburger, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 133 (2-3) : 591 - 607