Biharmonic properly immersed submanifolds in Euclidean spaces

被引:56
作者
Akutagawa, Kazuo [1 ]
Maeta, Shun [1 ]
机构
[1] Tohoku Univ, GSIS, Div Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Biharmonic map; Biharmonic submanifold; Chen's conjecture; HYPERSURFACES;
D O I
10.1007/s10711-012-9778-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a complete biharmonic immersed submanifold M in a Euclidean space . Assume that the immersion is proper, that is, the preimage of every compact set in is also compact in M. Then, we prove that M is minimal. It is considered as an affirmative answer to the global version of Chen's conjecture for biharmonic submanifolds.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1998, Kyushu J. Math., DOI DOI 10.2206/KYUSHUJM.52.167
[2]  
Chen B. Y, 1988, SOME OPEN PROBLEMS C
[3]  
Chen B.-Y., 1991, Memoirs Fac. Sci. Kyushu Univ. Ser. A, Math., V45, P323
[4]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[5]  
Defever F, 1998, MATH NACHR, V196, P61
[6]  
Dimitric I. M., 1992, Bull. Inst. Math. Acad. Sinica, V20, P53
[7]   HYPERSURFACES IN E(4) WITH HARMONIC CURVATURE VECTOR FIELD [J].
HASANIS, T ;
VLACHOS, T .
MATHEMATISCHE NACHRICHTEN, 1995, 172 :145-169
[8]   Biharmonic Submanifolds in a Riemannian Manifold with Non-Positive Curvature [J].
Nakauchi, Nobumitsu ;
Urakawa, Hajime .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :467-474
[9]   Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature [J].
Nakauchi, Nobumitsu ;
Urakawa, Hajime .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (02) :125-131
[10]   HARMONIC-FUNCTIONS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (02) :201-228