Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation

被引:98
作者
Wang, L [1 ]
Tang, F
Wu, H
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum computing; genetic algorithm; hybrid algorithm; numerical optimization; parameter estimation;
D O I
10.1016/j.amc.2005.01.115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum computing is applied to genetic algorithm (GA) to develop a class of quantum-inspired genetic algorithm (QGA) characterized by certain principles of quantum mechanisms for numerical optimization. Furthermore, a framework of hybrid QGA, named RQGA, is proposed by reasonably combining the Q-bit search of quantum algorithm in micro-space and classic genetic search of real-coded GA (RGA) in macro-space to achieve better optimization performances. Simulation results based on typical functions demonstrate the effectiveness of the hybridization, especially the superiority of RQGA in terms of optimization quality, efficiency as well as the robustness on parameters and initial conditions. Moreover, simulation results about model parameter estimation also demonstrate the effectiveness and efficiency of the RQGA. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 16 条
  • [1] [Anonymous], [No title captured], DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]
  • [2] Goldberg D.E., 1989, OPTIMIZATION MACHINE
  • [3] Ground-state wave functions of two-particle systems determined using quantum genetic algorithms
    Grigorenko, I
    Garcia, ME
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 291 (1-4) : 439 - 448
  • [4] Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
    Han, KH
    Kim, JH
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (06) : 580 - 593
  • [5] Han KH, 2000, IEEE C EVOL COMPUTAT, P1354, DOI 10.1109/CEC.2000.870809
  • [6] Jiang Bo, 2000, Control Theory & Applications, V17, P150
  • [7] Li Linglai, 2002, Journal of Tsinghua University (Science and Technology), V42, P1207
  • [8] LI LL, 2002, J TSINGHUA U, V42, P1213
  • [9] Quantum-inspired genetic algorithms
    Narayanan, A
    Moore, M
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 61 - 66
  • [10] Shor P. W., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P124, DOI 10.1109/SFCS.1994.365700