On a Family of High-Order Iterative Methods under Kantorovich Conditions and Some Applications

被引:7
作者
Amat, S. [1 ]
Bermudez, C. [1 ]
Busquier, S. [1 ]
Legaz, M. J. [1 ]
Plaza, S. [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estat, Cartagena 30203, Spain
[2] Univ Santiago Chile, Fac Ciencia, Dept Matemat, Santiago, Chile
关键词
NONLINEAR EQUATIONS; CHEBYSHEV METHOD; MULTIPLE ROOTS; NEWTONS METHOD; CONVERGENCE; VARIANT;
D O I
10.1155/2012/782170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of a class of high-order iterative methods for nonlinear equations on Banach spaces. An analysis of the convergence under Kantorovich-type conditions is proposed. Some numerical experiments, where the analyzed methods present better behavior than some classical schemes, are presented. These applications include the approximation of some quadratic and integral equations.
引用
收藏
页数:14
相关论文
共 30 条
[1]   A modified Chebyshev's iterative method with at least sixth order of convergence [J].
Amat, S. ;
Hernandez, M. A. ;
Romero, N. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) :164-174
[2]   Third-order iterative methods under Kantorovich conditions [J].
Amat, S. ;
Busquier, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) :243-261
[3]   An adaptive version of a fourth-order iterative method for quadratic equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 191 (02) :259-268
[4]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[5]  
Amat S., APPL NUMERI IN PRESS
[6]  
[Anonymous], CONTROL THEORY PAR 1
[7]  
Argyros I.K., 1998, Korean J. Comput. Appl. Math, V5, P465
[8]   THE CONVERGENCE OF A HALLEY-CHEBYSHEFF-TYPE METHOD UNDER NEWTON-KANTOROVICH HYPOTHESES [J].
ARGYROS, IK .
APPLIED MATHEMATICS LETTERS, 1993, 6 (05) :71-74
[9]  
Dehghan M., 2011, J COMPUTATIONAL MATH, V51, P555
[10]   Three-point methods with and without memory for solving nonlinear equations [J].
Dzunic, J. ;
Petkovic, M. S. ;
Petkovic, L. D. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :4917-4927