Some modifications in conformable fractional integral inequalities

被引:23
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Mohammed, Pshtiwan Othman [4 ]
Vivas-Cortez, Miguel [5 ]
Rangel-Oliveros, Yenny [5 ]
机构
[1] Inst Space Sci, MG-23, R-76900 Magurele, Romania
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] China Med Univ, Dept Med Res, China Med Univ Hosp, Taichung, Taiwan
[4] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[5] Pontificia Univ Catolica Ecuador, Fac Ciencias Exactas & Nat, Escuela Ciencias Fis & Matemat, Quito, Ecuador
关键词
Integral inequality; Conformable operator; Convex functions;
D O I
10.1186/s13662-020-02837-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The prevalence of the use of integral inequalities has dramatically influenced the evolution of mathematical analysis. The use of these useful tools leads to faster advances in the presentation of fractional calculus. This article investigates the Hermite-Hadamard integral inequalities via the notion of F-convexity. After that, we introduce the notion of F-mu-convexity in the context of conformable operators. In view of this, we establish some Hermite-Hadamard integral inequalities (both trapezoidal and midpoint types) and some special case of those inequalities as well. Finally, we present some examples on special means of real numbers. Furthermore, we offer three plot illustrations to clarify the results.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Some modifications in conformable fractional integral inequalities
    Dumitru Baleanu
    Pshtiwan Othman Mohammed
    Miguel Vivas-Cortez
    Yenny Rangel-Oliveros
    Advances in Difference Equations, 2020
  • [2] Some inequalities of the Gruss type for conformable k-fractional integral operators
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Ghaffar, Abdul
    Qi, Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [3] Some new inequalities of the Gruss type for conformable fractional integrals
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Qi, Feng
    AIMS MATHEMATICS, 2018, 3 (04): : 575 - 583
  • [4] MORE NEW RESULTS ON INTEGRAL INEQUALITIES FOR GENERALIZED K-FRACTIONAL CONFORMABLE INTEGRAL OPERATORS
    Chu, Yu-Ming
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Kalsoom, Humaira
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2119 - 2135
  • [5] Fractional Integral Inequalities for Some Convex Functions
    Bayraktar, B. R.
    Attaev, A. Kh
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 104 (04): : 14 - 27
  • [6] Some extended fractional integral inequalities with applications
    Hussain, Sabir
    Khalid, Javairiya
    FILOMAT, 2023, 37 (27) : 9145 - 9167
  • [7] Further Generalizations of Some Fractional Integral Inequalities
    Chen, Dong
    Anwar, Matloob
    Farid, Ghulam
    Yasmeen, Hafsa
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [8] Some Fractional Integral Inequalities by Way of Raina Fractional Integrals
    Vivas-Cortez, Miguel
    Latif, Asia
    Hussain, Rashida
    SYMMETRY-BASEL, 2023, 15 (10):
  • [9] New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications
    Abdeljawad, Thabet
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [10] Some trapezoid type inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 289 - 295