High CO2 Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations

被引:48
作者
Erucar, Ilknur [1 ]
Keskin, Seda [1 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey
关键词
CARBON-DIOXIDE; MOLECULAR SIMULATIONS; FORCE-FIELD; MIXTURES; DIFFUSION; SORPTION; CAPTURE; CH4/H-2; EQUILIBRIA; DESIGN;
D O I
10.1021/ie303343m
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Molecular simulations were used to assess the potential of a new amine-functionalized metal organic framework (MOF), Zn-aminotriazolato-oxalate (Zn-Atz), in adsorption-based and membrane-based gas separations. Single-component adsorption isotherms for CO2, H-2, CH4, and N-2 were computed and compared with the available experimental isotherm data. The good agreement between experiments and simulations motivated us to predict adsorption equilibria and transport rates of CH4/H-2, CO2/H-2, CO2/CH4, and CO2/N-2 mixtures in Zn-Atz. We then used this molecular-level information to evaluate adsorption selectivity, permeation selectivity, working capacity, gas permeability, and sorbent selection parameter of Zn-Atz for CH4/H-2, CO2/H-2, CO2/CH4, and CO2/N-2 separations. The separation performance of Zn-Atz was compared with several other nanoporous adsorbents and membranes. Finally, the selectivity and permeability of mixed matrix membranes where Zn-Atz was used as filler particles were evaluated by combining molecular simulations and continuum modeling. Our results showed that this amine-functionalized MOF is a very good candidate especially for separation of CO2 from other gases both in adsorption-based and membrane-based separations due to its high affinity for CO2.
引用
收藏
页码:3462 / 3472
页数:11
相关论文
共 62 条
[1]   Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J].
Arstad, Bjornar ;
Fjellvag, Helmer ;
Kongshaug, Kjell Ove ;
Swang, Ole ;
Blom, Richard .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2008, 14 (06) :755-762
[2]   CO2 absorption in aqueous solutions of alkanolamines:: Mechanistic insight from quantum chemical calculations [J].
Arstad, Bjornar ;
Blom, Richard ;
Swang, Ole .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (07) :1222-1228
[3]   Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations [J].
Atci, Erhan ;
Keskin, Seda .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) :15525-15537
[4]   Unprecedentedly High Selective Adsorption of Gas Mixtures in rho Zeolite-like Metal-Organic Framework: A Molecular Simulation Study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (32) :11417-11425
[5]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[6]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[7]   Isothermal versus Non-isothermal Adsorption-Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas [J].
Belmabkhout, Youssef ;
Sayari, Abdelhamid .
ENERGY & FUELS, 2010, 24 (09) :5273-5280
[8]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629
[9]   Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional [J].
Campana, Carlos ;
Mussard, Bastien ;
Woo, Tom K. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (10) :2866-2878
[10]   Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal-Organic Framework Materials [J].
Cessford, Naomi F. ;
Seaton, Nigel A. ;
Dueren, Tina .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (13) :4911-4921