Transitive Novikov algebras on four-dimensional nilpotent Lie algebras

被引:23
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Poisson Bracket; Hamiltonian Operator;
D O I
10.1023/A:1011968631980
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novikov algebras were introduced in connection with the Poisson brackets (of hydrodynamic type) and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra, and the radical of a finite-dimensional Novikov algebra is transitive. In this paper, we give a classification of transitive Novikov algebras on four-dimensional nilpotent Lie algebras based on Kim (1986, Journal of Differential Geometry 24, 373-394).
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 50 条
[41]   Knot invariants from four-dimensional gauge theory [J].
Gaiotto, Davide ;
Witten, Edward .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (03) :935-1086
[42]   Exact multisoliton solutions in the four-dimensional Skyrme model [J].
Canfora, Fabrizio ;
Correa, Francisco ;
Zanelli, Jorge .
PHYSICAL REVIEW D, 2014, 90 (08)
[43]   Four-Dimensional Gravity on a Covariant Noncommutative Space (II) [J].
Manolakos, G. ;
Manousselis, P. ;
Zoupanos, G. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (8-9)
[44]   ELECTROMAGNETIC EXCITATIONS OF HALL SYSTEMS ON FOUR-DIMENSIONAL SPACE [J].
Daoud, Mohammed ;
Jellal, Ahmed ;
Oueld Guejdi, Abdellah .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (07) :1465-1486
[45]   Quadratic algebras for three-dimensional superintegrable systems [J].
C. Daskaloyannis ;
Y. Tanoudis .
Physics of Atomic Nuclei, 2010, 73 :214-221
[46]   Stochastic dynamics of lie algebras of Poisson brackets in neighborhoods of nonsmoothness points of Hamiltonians [J].
M. I. Zelikin ;
L. V. Lokutsievskii ;
R. Hildebrand .
Doklady Mathematics, 2013, 87 :259-263
[47]   Quantum dissipative systems. IV. Analogues of Lie algebras and groups [J].
V. E. Tarasov .
Theoretical and Mathematical Physics, 1997, 110 :168-178
[48]   Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable [J].
A. M. Vershik ;
B. B. Shoikhet .
Theoretical and Mathematical Physics, 2000, 123 :701-707
[49]   DUAL COALGEBRAS OF JACOBIAN n-LIE ALGEBRAS OVER POLYNOMIAL RINGS [J].
Zhelyabin, V. N. ;
Kolesnikov, P. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (05) :1153-1166
[50]   Stochastic Dynamics of Lie Algebras of Poisson Brackets in Neighborhoods of Nonsmoothness Points of Hamiltonians [J].
Zelikin, M. I. ;
Lokutsievskiy, L. V. ;
Hildebrand, R. .
DOKLADY MATHEMATICS, 2013, 87 (03) :259-263