Transitive Novikov algebras on four-dimensional nilpotent Lie algebras

被引:23
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Poisson Bracket; Hamiltonian Operator;
D O I
10.1023/A:1011968631980
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novikov algebras were introduced in connection with the Poisson brackets (of hydrodynamic type) and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra, and the radical of a finite-dimensional Novikov algebra is transitive. In this paper, we give a classification of transitive Novikov algebras on four-dimensional nilpotent Lie algebras based on Kim (1986, Journal of Differential Geometry 24, 373-394).
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 50 条
[31]   A Matrix Model of Four-Dimensional Noncommutative Gravity [J].
Manolakos, George ;
Manousselis, Pantelis ;
Roumelioti, Danai ;
Stefas, Stelios ;
Zoupanos, George .
UNIVERSE, 2022, 8 (04)
[32]   Four-dimensional gravity on a covariant noncommutative space [J].
Manolakos, G. ;
Manousselis, P. ;
Zoupanos, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
[33]   Four-Dimensional Spin Foam Perturbation Theory [J].
Martins, Joao Faria ;
Mikovic, Aleksandar .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[34]   Four-Dimensional Entropy from Three-Dimensional Gravity [J].
Carlip, S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (07)
[35]   Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation [J].
Konyaev, A. Yu. .
SBORNIK MATHEMATICS, 2014, 205 (01) :45-62
[36]   Pre-Lie algebras and systems of Dyson-Schwinger equations [J].
Foissy, Loic .
FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 :9-89
[37]   Homotopy Rota-Baxter operators and post-Lie algebras [J].
Tang, Rong ;
Bai, Chengming ;
Guo, Li ;
Sheng, Yunhe .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) :1-35
[38]   Quantized Nambu-Poisson manifolds and n-Lie algebras [J].
DeBellis, Joshua ;
Saemann, Christian ;
Szabo, Richard J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[39]   Quantum dissipative systems .4. Analogues of Lie algebras and groups [J].
Tarasov, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (02) :168-178
[40]   Loop and Path Spaces and¶Four-Dimensional BF Theories:¶Connections, Holonomies and Observables [J].
Alberto S. Cattaneo ;
P. Cotta-Ramusino ;
M. Rinaldi .
Communications in Mathematical Physics, 1999, 204 :493-524