Transitive Novikov algebras on four-dimensional nilpotent Lie algebras

被引:23
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Poisson Bracket; Hamiltonian Operator;
D O I
10.1023/A:1011968631980
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novikov algebras were introduced in connection with the Poisson brackets (of hydrodynamic type) and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra, and the radical of a finite-dimensional Novikov algebra is transitive. In this paper, we give a classification of transitive Novikov algebras on four-dimensional nilpotent Lie algebras based on Kim (1986, Journal of Differential Geometry 24, 373-394).
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 50 条
[21]   Superconformal vertex algebras in four dimensions [J].
Nedanovski, Dimitar .
MODERN PHYSICS LETTERS A, 2015, 30 (12)
[22]   Twist of Lie algebras by a rank-3 subalgebra [J].
N. Aizawa .
Physics of Atomic Nuclei, 2001, 64 :2069-2073
[23]   sh-Lie Algebras Induced by Gauge Transformations [J].
Ron Fulp ;
Tom Lada ;
Jim Stasheff .
Communications in Mathematical Physics, 2002, 231 :25-43
[24]   Eigenvalue problem versus Casimir functions for Lie algebras [J].
Dobrogowska, Alina ;
Szajewska, Marzena .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
[25]   Eigenvalue problem versus Casimir functions for Lie algebras [J].
Alina Dobrogowska ;
Marzena Szajewska .
Analysis and Mathematical Physics, 2024, 14
[26]   Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky-Novikov Type Symmetry Algebras and Related Hamiltonian Operators [J].
Artemovych, Orest D. ;
Balinsky, Alexander A. ;
Blackmore, Denis ;
Prykarpatski, Anatolij K. .
SYMMETRY-BASEL, 2018, 10 (11)
[27]   Residues of $q$-Hypergeometric Integrals and Characters of Affine Lie Algebras [J].
Atsushi Nakayashiki .
Communications in Mathematical Physics, 2003, 240 :197-241
[28]   Completely integrable Hamiltonian systems on semidirect sums of Lie algebras [J].
Zhdanova, M. M. .
SBORNIK MATHEMATICS, 2009, 200 (5-6) :629-659
[29]   Braided Tensor Categories of Admissible Modules for Affine Lie Algebras [J].
Creutzig, Thomas ;
Huang, Yi-Zhi ;
Yang, Jinwei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (03) :827-854
[30]   Nonrenormalizable superpotential in four-dimensional string models [J].
G. G. Volkov ;
A. A. Maslikov ;
H. D. Dahmen ;
T. Stroh .
Physics of Atomic Nuclei, 2000, 63 :120-138