Transitive Novikov algebras on four-dimensional nilpotent Lie algebras

被引:23
作者
Bai, CM [1 ]
Meng, DJ
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Poisson Bracket; Hamiltonian Operator;
D O I
10.1023/A:1011968631980
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novikov algebras were introduced in connection with the Poisson brackets (of hydrodynamic type) and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra, and the radical of a finite-dimensional Novikov algebra is transitive. In this paper, we give a classification of transitive Novikov algebras on four-dimensional nilpotent Lie algebras based on Kim (1986, Journal of Differential Geometry 24, 373-394).
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 19 条
[1]   The structures of bi-symmetric algebras and their sub-adjacent Lie algebras [J].
Bai, CM ;
Meng, DJ .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2717-2734
[2]  
Balinsky A.A., 1985, SOV MATH DOKL, V32, P228
[3]   Simple left-symmetric algebras with solvable Lie algebra [J].
Burde D. .
manuscripta mathematica, 1998, 95 (3) :397-411
[4]  
Dubrovin B., 1983, SOV MATH DOKL, V270, P665
[5]  
Dubrovin B A., 1984, Soviet Math. Dokl., V30, P651
[6]  
Gel'fand I., 1979, FUNCT ANAL APPL, V13, P13, DOI 10.1007/BF01078363
[7]  
Gelfand I.M., 1975, Russian Mathematical Surveys, V30, P77, DOI DOI 10.1070/RM1975V030N05ABEH001522
[8]  
Gelfand IM, 1976, Functional Analysis and Its Applications, V10, P16
[9]  
KIM H, 1986, J DIFFER GEOM, V24, P373
[10]  
Osborn J., 1992, NOVA J ALGEBRA GEOM, V1, P1