Automatic Classification Rules for Anomaly Detection in Time-Series

被引:1
|
作者
Ben Kraiem, Ines [1 ]
Ghozzi, Faiza [3 ]
Peninou, Andre [1 ]
Roman-Jimenez, Geoffrey [2 ]
Teste, Olivier [1 ]
机构
[1] Univ Toulouse, IRIT, UT2J, Toulouse, France
[2] Univ Toulouse, CNRS, IRIT, Toulouse, France
[3] Univ Sfax, ISIMS, MIRACL, Sfax, Tunisia
关键词
Anomaly detection; Classification rules; Pattern-based method; Decision Tree; Time-series;
D O I
10.1007/978-3-030-50316-1_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection in time-series is an important issue in many applications. It is particularly hard to accurately detect multiple anomalies in time-series. Pattern discovery and rule extraction are effective solutions for allowing multiple anomaly detection. In this paper, we define a Composition-based Decision Tree algorithm that automatically discovers and generates human-understandable classification rules for multiple anomaly detection in time-series. To evaluate our solution, our algorithm is compared to other anomaly detection algorithms on real datasets and benchmarks.
引用
收藏
页码:321 / 337
页数:17
相关论文
共 50 条
  • [21] A Modified DBSCAN Algorithm for Anomaly Detection in Time-series Data with
    Jain, Praphula
    Bajpai, Mani Shankar
    Pamula, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (01) : 23 - 28
  • [22] Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series
    Tambuwal A.I.
    Neagu D.
    SN Computer Science, 2021, 2 (6)
  • [23] Anomaly Detection from Multivariate Time-Series with Sparse Representation
    Takeishi, Naoya
    Yairi, Takehisa
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2651 - 2656
  • [24] Time-Series Few Shot Anomaly Detection for HVAC Systems
    Huang, Yuxin
    Coursey, Austin
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    IFAC PAPERSONLINE, 2024, 58 (04): : 426 - 431
  • [25] Generic and Scalable Framework for Automated Time-series Anomaly Detection
    Laptev, Nikolay
    Amizadeh, Saeed
    Flint, Ian
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1939 - 1947
  • [26] Anomaly Detection in COVID-19 Time-Series Data
    Homayouni H.
    Ray I.
    Ghosh S.
    Gondalia S.
    Kahn M.G.
    SN Computer Science, 2021, 2 (4)
  • [27] Non-Pattern-Based Anomaly Detection in Time-Series
    Tkach, Volodymyr
    Kudin, Anton
    Kebande, Victor R. R.
    Baranovskyi, Oleksii
    Kudin, Ivan
    ELECTRONICS, 2023, 12 (03)
  • [28] Contrastive time-series reconstruction method for satellite anomaly detection
    Li, Zhenyu
    Song, Yuchen
    Peng, Xiyuan
    Liu, Datong
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (04): : 17 - 26
  • [29] Time-Series Deep Learning Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Bortolato, Damiano
    Martinelli, Valentina
    Savarese, Giovanni
    Susto, Gian Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 1566 - 1571
  • [30] Driver and Path Detection through Time-Series Classification
    Bernardi, Mario Luca
    Cimitile, Marta
    Martinelli, Fabio
    Mercaldo, Francesco
    JOURNAL OF ADVANCED TRANSPORTATION, 2018,