The Lp dual Minkowski problem for p > 1 and q > 0

被引:53
作者
Boroczky, Karoly J. [1 ,2 ]
Fodor, Ferenc [3 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Cent European Univ, Dept Math, Nador U 9, H-1051 Budapest, Hungary
[3] Univ Szeged, Dept Geometry, Bolyai Inst, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
L-p dual Minkowski problem; Monge-Ampere equation;
D O I
10.1016/j.jde.2018.12.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
General L-p dual curvature measures have recently been introduced by Lutwak, Yang and Zhang [24]. These new measures unify several other geometric measures of the Brunn-Minkowski theory and the dual Brunn-Minkowski theory. L-p dual curvature measures arise from qth dual intrinsic volumes by means of Alexandrov-type variational formulas. Lutwak, Yang and Zhang [24] formulated the L-p dual Minkowski problem, which concerns the characterization of L-p dual curvature measures. In this paper, we solve the existence part of the L-p dual Minkowski problem for p > 1 and q > 0, and we also discuss the regularity of the solution. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:7980 / 8033
页数:54
相关论文
共 32 条