A Secure Aggregation Scheme for Model Update in Federated Learning

被引:1
作者
Wang, Baolin [1 ]
Hu, Chunqiang [1 ,2 ]
Liu, Zewei [1 ]
机构
[1] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 400044, Peoples R China
[2] China Southern Power Grid, Joint Lab Cyberspace Secur, Guangzhou, Peoples R China
来源
WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I | 2022年 / 13471卷
基金
中国国家自然科学基金;
关键词
Federated Learning (FL); Secure aggregation; Smart contract; Communication-efficient; Robust; DEFENSE;
D O I
10.1007/978-3-031-19208-1_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning is a novel machine learning framework that effectively satisfies the requirements of multiple organizations for data usage and model training while meeting privacy protection, data security, and government regulations. However, recent research has shown that attackers can infer users' private information from their shared model parameters. To address the issue, in this paper, we propose the smart contract assisted secure aggregation scheme (SCSA). Firstly, we present a triple layers architecture based on blockchain for secure aggregation, which can adapt to application scenarios where a large amount of devices are involved in model training. Then, with the help of smart contracts, our scheme can efficiently distribute security masks to users in a decentralized form to ensure the security of parameters, and combine with secret sharing to design a double fault tolerance mechanism to effectively improve the robustness of the system. Finally, the theoretical analysis and simulation experiments prove that our scheme has high security and robustness while maintaining efficiency.
引用
收藏
页码:500 / 512
页数:13
相关论文
共 20 条
[1]  
Beguier C, 2021, Arxiv, DOI arXiv:2007.14861
[2]  
Bonawitz K., 2016, P NEURIPS WORKSH PRI
[3]   Generative Adversarial Networks: A Survey Toward Private and Secure Applications [J].
Cai, Zhipeng ;
Xiong, Zuobin ;
Xu, Honghui ;
Wang, Peng ;
Li, Wei ;
Pan, Yi .
ACM COMPUTING SURVEYS, 2021, 54 (06)
[4]   FLEX: Trading Edge Computing Resources for Federated Learning via Blockchain [J].
Deng, Yang ;
Han, Tao ;
Zhang, Ning .
IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
[5]  
Dowlin N, 2016, PR MACH LEARN RES, V48
[6]   Property Inference Attacks on Fully Connected Neural Networks using Permutation Invariant Representations [J].
Ganju, Karan ;
Wang, Qi ;
Yang, Wei ;
Gunter, Carl A. ;
Borisov, Nikita .
PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, :619-633
[7]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[8]   Two-Layered Blockchain Architecture for Federated Learning over Mobile Edge Network [J].
Feng, Lei ;
Yang, Zhixiang ;
Guo, Shaoyong ;
Qiu, Xuesong ;
Li, Wenjing ;
Yu, Peng .
IEEE NETWORK, 2022, 36 (01) :45-51
[9]   Approximate Holistic Aggregation in Wireless Sensor Networks [J].
Li, Ji ;
Cheng, Siyao ;
Li, Yingshu ;
Cai, Zhipeng .
2015 IEEE 35TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, 2015, :740-741
[10]  
McMahan H. B., 2016, Communication-efficient learning of deep networks from decentralized data 2023