Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals

被引:48
作者
Ong, Zhun-Yong [1 ]
Cai, Yongqing [1 ]
Zhang, Gang [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
关键词
FIELD-EFFECT TRANSISTORS; THERMAL-CONDUCTIVITY; ENERGY-DISSIPATION; MOS2; TRANSPORT; ELECTRONICS; TRANSITION;
D O I
10.1103/PhysRevB.94.165427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of the phononic thermal (Kapitza) resistance at the interface between graphene or another single-layer two-dimensional (2D) crystal (e.g., MoS2) and a flat substrate, based on a modified version of the cross-plane heat transfer model by Persson, Volokitin, and Ueba [J. Phys.: Condens. Matter 23, 045009 (2011)]. We show how intrinsic flexural phonon damping is necessary for obtaining a finite Kapitza resistance and also generalize the theory to encased single-layer 2D crystals with a superstrate. We illustrate our model by computing the thermal boundary conductance (TBC) for bare and SiO2-encased single-layer graphene and MoS2 on a SiO2 substrate, using input parameters from first-principles calculation. The estimated room temperatures TBC for bare (encased) graphene and MoS2 on SiO2 are 34.6 (105) and 3.10 (5.07) MWK(-1)m(-2), respectively. The theory predicts the existence of a phonon frequency crossover point, below which the low-frequency flexural phonons in the bare 2D crystal do not dissipate energy efficiently to the substrate. We explain within the framework of our theory how the encasement of graphene with a top SiO2 layer introduces new low-frequency transmission channels, which significantly reduce the graphene-substrate Kapitza resistance. We emphasize that the distinction between bare and encased 2D crystals must be made in the analysis of cross-plane heat dissipation to the substrate.
引用
收藏
页数:11
相关论文
共 47 条
[11]   MoS2 nanoresonators: intrinsically better than graphene? [J].
Jiang, Jin-Wu ;
Park, Harold S. ;
Rabczuk, Timon .
NANOSCALE, 2014, 6 (07) :3618-3625
[12]   Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect [J].
Jiang, JW ;
Qi, ZN ;
Park, HS ;
Rabczuk, T .
NANOTECHNOLOGY, 2013, 24 (43)
[13]   THERMAL CONDUCTIVITY AND LATTICE VIBRATIONAL MODES [J].
KLEMENS, PG .
SOLID STATE PHYSICS, 1958, 7 :1-98
[14]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[15]   Single-Layer MoS2 Electronics [J].
Lembke, Dominik ;
Bertolazzi, Simone ;
Kis, Andras .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (01) :100-110
[16]   Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles [J].
Li, Wu ;
Carrete, J. ;
Mingo, Natalio .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[17]   Phonon thermal transport in strained and unstrained graphene from first principles [J].
Lindsay, L. ;
Li, Wu ;
Carrete, Jesus ;
Mingo, Natalio ;
Broido, D. A. ;
Reinecke, T. L. .
PHYSICAL REVIEW B, 2014, 89 (15)
[18]   Flexural phonons and thermal transport in graphene [J].
Lindsay, L. ;
Broido, D. A. ;
Mingo, Natalio .
PHYSICAL REVIEW B, 2010, 82 (11)
[19]   Channel Length Scaling of MoS2 MOSFETs [J].
Liu, Han ;
Neal, Adam T. ;
Ye, Peide D. .
ACS NANO, 2012, 6 (10) :8563-8569
[20]   Measurement of the thermal conductance of the graphene/SiO2 interface [J].
Mak, Kin Fai ;
Lui, Chun Hung ;
Heinz, Tony F. .
APPLIED PHYSICS LETTERS, 2010, 97 (22)